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an orientable n-manifold with a nonimmersion detected by Stiefel-Whitney classes. 
For Spin manifolds, we prove the analogue of the upper bound and establish the 
complete answer for n ≤ 23 and 32 ≤ n ≤ 33. Results similar to many of these were 
obtained some 50 years ago, but in a much less tractable form. The sharp results 
for Spin manifolds require detailed calculations of ko-homology groups of mod-2 
Eilenberg MacLane spaces.
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1. Introduction

This work was motivated by a question asked by Mike Hopkins after Ralph Cohen’s talk ([6]) on immer-
sions of manifolds at a distinguished Harvard lecture series. Cohen had discussed aspects of his proof ([5]) 
that every n-manifold can be immersed in R2n−α(n), where α(n) denotes the number of 1’s in the binary 
expansion of n. Hopkins asked whether there were similar results for other classes of manifolds, such as 
orientable or Spin manifolds. Work was done on this question long ago for orientable manifolds in [9], [3], 
and [11], and for Spin manifolds in [12] and [14]. We extend their results and reinterpret in a much more 
tractable form, with a self-contained proof.

By “manifold” we always mean a compact connected smooth manifold without boundary. Let wi denote 
the ith Stiefel-Whitney class of the stable normal bundle of a manifold. A standard result says that if an 
n-manifold M immerses in Rn+c, then wi(M) = 0 for i > c. We say that a nonimmersion of an n-manifold 
in Rn+c is detected by Stiefel-Whitney classes if wi(M) �= 0 for some i > c.
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Our user-friendly reinterpretation of [11, Theorem 1] is as follows.

Theorem 1.1. Let εn = 0 if n ≡ 1 mod 4, and otherwise εn = 1. There exists a nonimmersion of an 
orientable n-manifold in R2n−k−1 detected by Stiefel-Whitney classes if and only if k ≥ α(n) + εn.

Thus for n ≡ 1 mod 4, the restriction of Cohen’s result to orientable manifolds is optimal, while for n �≡ 1
mod 4, the best that one might hope for is that all orientable n-manifolds can be immersed in R2n−α(n)−1.

The situation for Spin manifolds is similar, but more complicated, and is not completely resolved. The 
reduction of the problem to algebraic topology for both orientable and Spin manifolds is given in the following 
result, whose proof appears at the end of this section. Here χ is the canonical antiautomorphism of the mod 
2 Steenrod algebra, ιk is the fundamental class in the mod-2 cohomology of the Eilenberg MacLane space 
K(Z2, k), and ko∗(−) is connective KO homology, localized at 2.

Theorem 1.2.
a. Let ρ : H∗(X; Z) → H∗(X; Z2) be induced by reduction mod 2. There exists an orientable n-dimensional 

manifold with a nonimmersion in R2n−k−1 implied by Stiefel-Whitney classes if and only if there ex-
ists an element α ∈ Hn(K(Z2, k); Z) such that 〈χ Sqn−k ιk, ρ(α)〉 �= 0. Moreover, it is necessary that 
χ Sqn−k ιk /∈ im(Sq1).

b. Let h : ko∗(X) → H∗(X; Z2) denote the Hurewicz homomorphism. There exists an n-dimensional 
Spin manifold with a nonimmersion in R2n−k−1 implied by Stiefel-Whitney classes if and only if there 
exists an element α ∈ kon(K(Z2, k)) such that 〈χ Sqn−k ιk, h∗α〉 �= 0. Moreover, it is necessary that 
χ Sqn−k ιk /∈ im(Sq1, Sq2).

In Section 2, we prove the following theorem, which resolves completely the necessary conditions of 
Theorem 1.2.

Theorem 1.3.
i. The smallest k such that χ Sqn−k ιk /∈ im(Sq1) ⊂ Hn(K(Z2, k); Z2) is

{
(a) α(m) + b n = 4m + b, 1 ≤ b ≤ 3
(b) α(n) + 1 n ≡ 0 (mod 4).

ii. The smallest k such that χ Sqn−k ιk /∈ im(Sq1, Sq2) ⊂ Hn(K(Z2, k); Z2) is

⎧⎪⎪⎨
⎪⎪⎩

(c) α(m) + b n = 8m + b, 1 ≤ b ≤ 7
(d) α(n) + 1 n ≡ 2e (mod 2e+2), e ≥ 3
(e) α(n) + 2 n ≡ 3 · 2e (mod 2e+2), e ≥ 3.

Immediate corollaries of Theorems 1.2 and 1.3 are the “only if” part of Theorem 1.1 and the following 
result. One easily checks the equivalence of the “α(m) + b” and “α(n) + ε′” versions.
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Table 1
Nonzero dual Stiefel-Whitney classes.

n 8–12 13–15 16–17 18–23 32–33
c 6 7 14 15 30

Corollary 1.4. Define ε′n by

ε′n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n ≡ 1 (8)
1 n ≡ 2, 3 (8)
3 n ≡ 4, 5 (8)
4 n ≡ 6, 7 (8)
1 n ≡ 2e (mod 2e+2), e ≥ 3
2 n ≡ 3 · 2e (mod 2e+2), e ≥ 3.

If there exists an n-dimensional Spin manifold for which a nonimmersion in R2n−k−1 is detected by Stiefel-
Whitney classes, then k ≥ α(n) + ε′n.

It can be verified that Corollary 1.4 is equivalent to the less tractable result [12, Proposition 1.1]. However, 
part (ii) of Theorem 1.3, which is needed in the proof of Theorem 1.5, is new.

The thing that makes the orientable case easier than the Spin case is that, as we show in Section 3, for 
the minimal value of k in case (i) of Theorem 1.3, a mod-2 homology class dual to χ Sqn−k ιk is always 
in the image from Hn(K(Z2, k); Z), thus implying the “if” part of Theorem 1.1. In the Spin case, if n is 
not one of the integers included in Theorem 1.5, we have not yet been able to determine whether, for the 
minimal value of k in case (ii) of Theorem 1.3, a mod-2 homology class dual to χ Sqn−k ιk is in the image 
from kon(K(Z2, k)). Moreover, for n ∈ {9, 10, 11, 12, 17, 33}, we find that there is not a mod-2 homology 
class dual to χ Sqn−k ιk for the minimal possible value of k in the image from kon(K(Z2, k)), but if we 
increase k by 1, the appropriate class is in this image. As we will discuss in Section 3, many of these results 
were obtained, from a somewhat different perspective, by the second author in [14]. Our result is as follows.

Theorem 1.5. The largest value of c for which there is an n-dimensional Spin manifold with wc �= 0 is given 
in Table 1.

All dual Stiefel-Whitney classes are 0 in Spin manifolds of dimension less than 8.

Thus, for the values of c in Theorem 1.5, there exists an n-dimensional Spin manifold which does not 
immerse in Rn+c−1, but Stiefel-Whitney classes allow the possibility that all immerse in Rn+c. For values 
of n not included in Theorem 1.5, we do not yet know the largest possible value of c.

We close this introductory section with this delayed proof.

Proof of Theorem 1.2. We prove (b); the proof of (a) is similar, using [7]. We first prove the necessary 
condition.

Assume a nonimmersion of an n-manifold M in R2n−k−1 is detected by wn−k �= 0. Then, by Poincaré 
duality, there must exist a class x ∈ Hk(M ; Z2) such that wn−kx is the nonzero element of Hn(M ; Z2). 
For a Spin manifold, the nonzero element of Hn(M ; Z2) is not in im(Sq1, Sq2). It is well-known (e.g., [9]) 
that wn−kx = χ Sqn−k(x). Consideration of the map f : X → K(Z2, k) for which f∗(ιk) = x shows that 
χ Sqn−k(ιk) is not in im(Sq1, Sq2).

The group MSpinn(X) = πn(MSpin ∧ X) consists of cobordism classes of pairs (M, f) where M is 
an n-dimensional Spin manifold and f : M → X is a map. The Hurewicz homomorphism MSpinn(X) →
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Hn(X; Z2) satisfies h∗([M, f ]) = f∗(ρ([M ])), where [M ] ∈ Hn(M ; Z) is the orientation class. By [1], localized 
at 2, there is an equivalence MSpin → bo ∨W ′, where W ′ is a 7-connected spectrum. Let HZ2 denote the 
mod-2 Eilenberg MacLane spectrum. The morphism [MSpin, HZ2] → [bo, HZ2] is an isomorphism, since 
[W ′, HZ2] = 0.

There exists a nonimmersion of an n-dimensional Spin-manifold in R2n−k−1 detected by Stiefel-Whitney 
classes iff there is an n-dimensional Spin manifold M and an element x ∈ Hk(M ; Z2) such that 
〈χ Sqn−k x, ρ[M ]〉 �= 0 iff there is an n-dimensional Spin manifold M and a map f : M → K(Z2, k)
such that 〈χ Sqn−k ιk, f∗(ρ[M ])〉 �= 0 iff ∃α ∈ MSpinn(K(Z2, k)) such that 〈χ Sqn−k ιk, h∗α〉 �= 0 iff 
∃α ∈ kon(K(Z2, k)) such that 〈χ Sqn−k ιk, h∗α〉 �= 0. �
2. Proof of Theorem 1.3

We use Milnor basis and the following facts, where Sq(R) = Sq(r1, . . . , rs). ([8], [10]) We assume that 
the reader is familiar with the complicated multiplication rule for Milnor basis elements.

Proposition 2.1.
i. | Sq(R)| =

∑
(2j − 1)aj and exc(R) =

∑
aj.

ii. χ Sqd is the sum of all Sq(R) with | Sq(R)| = d.
iii. Sq(R) /∈ im(Sq1, Sq2) iff r1 ≡ 0 mod 4 and r2 ≡ 0 mod 2.
iv. H∗(K(Z2, k); Z2) is a polynomial algebra generated by all Sq(R)ιk for which exc(R) < k.
v. Sq(R)ιk = 0 if exc(R) > k.
vi. If R = (r1, . . .), exc(R) = k, and ri = 0 for i < t, then Sq(R)ιk = (Sq(S)ιk)2

t , where S = (rt+1, . . .).

Proof of parts (a) and (c) of Theorem 1.3. We prove part (c). The proof of part (a) is completely analogous.
Write 8m =

∑
j≥1 εj2j with εj ∈ {0, 1}. Then Sq(E) = Sq(ε1, . . . , εr) has | Sq(E)| = 8m − α(m), 

exc(E) = α(m), and is not in im(Sq1, Sq2), since ε1 = ε2 = 0. With k = α(m) +b, hence n −k = 8m −α(m), 
χ Sqn−k ιk contains the term Sq(E)ιk. This is part of the basis, since exc(E) < k, can’t be canceled by other 
terms in χ Sqn−k ιk, and is not in im(Sq1, Sq2).

Now suppose Sq(R) = Sq(r1, . . . , rs) has | Sq(R)| = n − � with � ≤ α(m) + b, exc(R) ≤ �, and r1 ≡ 0
mod 4 and r2 ≡ 0 mod 2. Then 

∑
2jrj = | Sq(R)| + exc(R) ≤ n = 8m + b implies

∑
2jrj ≤

∑
2jεj = 8m (2.2)

since 
∑

2jrj is a multiple of 8. Let bj = rj − εj ≥ −1, and r1 = 4c1 and r2 = 2c2. Then (2.2) implies

8c1 + 8c2 +
∑
j≥3

2jbj ≤ 0, (2.3)

while � ≤ α(m) + b implies 8m − α(m) ≤ | Sq(R)| hence

0 ≤ 4c1 + 6c2 +
∑
j≥3

(2j − 1)bj . (2.4)

We claim that the only solution of (2.3) and (2.4) with cj ≥ 0 and bj ≥ −1 is the zero solution, which 
implies our result, namely that the only solution in part (b) with k ≤ α(m) + b is the one described 
at the beginning of the proof. First note that if there is a solution with c1 or c2 nonzero, they can be 
incorporated into b3, so we may omit c1 and c2. Let S = {j : bj = −1}. We wish to show that for a multiset 
of t’s (distinct from S but not necessarily from one another), the only way to have 

∑
2t ≤

∑
S 2j and ∑

(2j − 1) ≤
∑

(2t − 1) is the empty sums. For example, having bj = 2 contributes two 2t’s with t = j.
S
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Combining two equal t-terms makes the second inequality harder to satisfy. We perform this combining, 
and cancel whenever equal exponents occur on both sides. Thus we may assume all exponents are distinct. 
The largest exponent, j, must occur in S, and there is no way that distinct (2t − 1)’s less than that can be 
as large as 2j − 1. �
Proof of part (b). Let n = 4m =

∑
j≥1 2jεj with εj ∈ {0, 1} and e ≥ 2 the smallest subscript j for which 

εj = 1. Note that α(m) = α(n).
Suppose R = (r1, . . . , rs) has | Sq(R)| = 4m − � with � ≤ α(m), exc(R) ≤ �, and r1 ≡ 0 mod 2 (so 

Sq(R) /∈ im(Sq1)). Similarly to the proof of part (b), the only possibility is rj = εj for all j. �
∑

2jrj =
| Sq(R)| + exc(R) ≤ 4m =

∑
2jεj . With bj = rj − εj ≥ −1 and r1 = 2c1, we get 4c1 +

∑
j≥2 2jbj ≤ 0 and, 

from 4m − α(m) ≤ | Sq(R)|, 0 ≤ 2c1 +
∑

j≥2(2j − 1)bj . As before, this has only the zero solution.�
However,

Sq(ε1, . . . , εr)ια(m) = (Sq(εe, . . . , εr)ια(m))2
e−1

(2.5)

= Sq1(Sq(0, εe+1, . . . , εr)ια(m) · (Sq(εe, . . . , εr)ια(m))2
e−1−1)

since εe = 1. Thus χ Sqn−k ιk ∈ im(Sq1) for k ≤ α(m).
Now we consider k = α(m) +1. Let te−1 = 2, te = 0, else tj = εj , and let E′ be the sequence (te, te+1, . . .). 

Note that exc(E′) = α(m) − 1. Then

Sq(t1, . . . , ts)ια(m)+1 = (Sq(E′)ια(m)+1)2
e−1

.

We claim that (Sq(E′)ια(m)+1)2
e−1 cannot occur as a summand in Sq1(M) for any monomial M in classes 

Sq(R)ια(m)+1 with exc(R) ≤ α(m). This implies that for k = α(m) + 1, χ Sqn−k ιk /∈ im(Sq1) because it 
contains the term Sq(t1, . . .)ιk.

To prove the claim, first note that since E′ starts with 0, (Sq(E′)ιk)2
e−1 cannot be obtained in im(Sq1)

as in (2.5). The other feature that keeps it out of im(Sq1) is that k− exc(E′) = 2. This implies that to have 
Sq(a1, . . . , ar)ιk = (Sq(E′)ιk)2

p from 2.1(vi), it must be that (a1, . . . , ar) = (0p−1, 2, E′). This would give

(Sq(E′)ιk)2
e−1

= (Sq(E′)ιk)2
e−1−2p

Sq(0p−1, 2, E′),

but this is not in im(Sq1) since Sq(0p−1, 2, E′) /∈ im(Sq1). �
The following elementary lemma will be useful.

Lemma 2.6. Let n =
∑

εi2i with εi ∈ {0, 1}.

a. Suppose n ≡ 0 (4) and 
∑

ri(2i − 1) = n − α(n) − 1 with ri ≥ 0. Then 
∑

ri ≥ α(n) + 1 with equality if 
and only if (r1, . . .) is obtained from (ε1, . . .) by adding some (0, . . . , 0, 2, −1, 0, . . .).

b. Suppose n ≡ 0 (8) and
∑

ri(2i − 1) = n− α(n) − 2 (2.7)

with ri ≥ 0. Then 
∑

ri ≥ α(n) + 2 with equality if and only if (r1, . . .) is obtained from (ε1, . . .) by two 
steps of adding some (0, . . . , 0, 2, −1, 0, . . .).

Proof. We prove (b), as (a) is similar. Let n = 8m + 8. If 
∑

ri = α(n) + 1, then, adding this to (2.7), 
8m + 7 has been obtained as the sum of α(n) + 1 not-necessarily-distinct 2-powers. Three of those must 
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be used for the 7, so 8m is the sum of (α(n) − 2) 2-powers. But α(8m) ≥ α(n) − 1, contradiction. A 
similar contradiction is obtained if 

∑
ri = α(n). If 

∑
ri = α(n) + 2, then n is obtained as the sum of 

α(n) + 2 not-necessarily-distinct 2-powers. The only way this can be done is by twice splitting some 2i into 
2i−1 + 2i−1. �
Proof of part (d). Note that for k = α(n), χ Sqn−k ιk ∈ im(Sq1) ⊂ im(Sq1, Sq2) by part (c).

Now let k = α(n) + 1. Write n = 2e + 2e+1m with m even and m =
∑

i≥0 δi2i with δi ∈ {0, 1}. Let 
v = (δ0, δ1, . . .). Note that δ0 = 0. We first show that, mod im(Sq1, Sq2), χ Sqn−k ιk ≡ (Sq(0, v)ιk)2

e−1 . To 
see this, whenever δi = 1, let vi = v + (0i−1, 2, −1, 0, . . .). Then, by Lemma 2.6(a)

χ Sqn−k = Sq(0e−2, 2, 0, v) +
∑
δi=1

Sq(0e−1, 1, vi) + terms of excess > k.

Thus

χ Sqn−k ιk = Sq(0e−2, 2, 0, v)ιk +
∑
δi=1

Sq(0e−1, 1, vi)ιk

= (Sq(0, v)ιk)2
e−1

+
∑
δi=1

(Sq(1, vi)ιk)2
e−1

.

But

(Sq(1, vi)ιk)2
e−1

= Sq1(Sq(0, vi)ιk · (Sq(1, vi)ιk)2
e−1−1) ∈ im(Sq1), (2.8)

proving that χ Sqn−k ιk ≡ (Sq(0, v)ιk)2
e−1 .

We will complete the proof of part (d) by constructing a homomorphism φ : Hn(K(Z2, k); Z2) → Z2
such that φ(im(Sq1, Sq2)) = 0 and φ((Sq(0, v)ι)2e−1) = 1. Here and below, we write ι for ιk. Let

A1 = (Sq(0, v)ι)2
e−1

A2 = (Sq(0, v)ι)2
e−1−4(Sq(1, v)ι)2 Sq(0, 0, v)ι

A3 = (Sq(0, v)ι)2
e−1−3 Sq(1, v)ι · Sq(1, 0, v)ι

A4 = (Sq(0, v)ι)2
e−1−4 Sq(1, 0, v)ι · Sq(0, 1, v)ι

A5 = (Sq(0, v)ι)2
e−1−7(Sq(1, v)ι)3 Sq(0, 0, v)ι · Sq(1, 0, v)ι

A6 = (Sq(0, v)ι)2
e−1−8(Sq(1, v)ι)2 Sq(0, 0, v)ι · Sq(1, 0, v)ι · Sq(0, 1, v)ι.

Here A5 = 0 = A6 if e = 3. Then φ is defined to be the homomorphism which sends the monomials Ai to 
1, and all other monomials in the generators Sq(R)ι with exc(R) ≤ α(m) + 1 to 0.

One can verify that the only way that any of the Ai can occur as a summand of Sq1(M) or Sq2(M)
for a monomial M of the appropriate degree is as follows, where ≡ is mod the span of all monomials 
except the Ai. Since the number of Ai’s in each of these elements of im(Sq1, Sq2) is even, the claim that 
φ(im(Sq1, Sq2)) = 0 is proved.

Sq2((Sq(0, v)ι)2
e−1−2 Sq(0, 0, v)ι

)
≡ A1 + A2

Sq1((Sq(0, v)ι)2
e−1−3 Sq(1, v)ι · Sq(0, 0, v)ι

)
≡ A2 + A3

Sq1((Sq(0, v)ι)2
e−1−4 Sq(0, 0, v)ι · Sq(0, 1, v)ι

)
≡ A2 + A4

Sq2((Sq(0, v)ι)2
e−1−5 Sq(1, v)ι · Sq(0, 0, v)ι · Sq(1, 0, v)ι

)
≡ A3 + A5
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Sq2((Sq(0, v)ι)2
e−1−6 Sq(0, 0, v)ι · Sq(1, 0, v)ι · Sq(0, 1, v)ι

)
≡ A4 + A6

Sq1((Sq(0, v)ι)2
e−1−7 Sq(1, v)ι · Sq(0, 0, v)ι · Sq(1, 0, v)ι · Sq(0, 1, v)ι

)
≡ A5 + A6.

The last three are not present when e = 3.
As an aid for the reader doing this verifying, we note the following relations, using Proposition 2.1(vi) in 

the first three.

Sq2(Sq(0, 0, v)ι) = (Sq(0, v)ι)2

Sq1(Sq(0, 1, v)ι) = (Sq(1, v)ι)2

Sq2(Sq(0, v)ι) = (Sq(v)ι)2

Sq2(Sq(1, 0, v)ι) = Sq(0, 1, v)ι.

Trickier than computing the Sq1 and Sq2 is determining that the Ai cannot be achieved in any other way. 
For example, you might think that (Sq(0, v)ι)2 as part of the first factor of A2 might be obtained from 
Sq2(Sq(0, 0, v)ι), but it doesn’t occur because it would be coming from (Sq(0, 0, v)ι)2 and so would get a 
coefficient 2. �
Proof of part (e). Let n = 3 · 2e + 2e+2m with m =

∑
i≥0 δi2i and v = (δ0, δ1, . . .). We will first show that 

χ Sqn−k ιk ∈ im(Sq1, Sq2) when k = α(m) +3. Whenever δi = 1 with i ≥ 1, let vi = v+(0i−2, 2, −1, 0, . . .). By 
Lemma 2.6(a), the only summands of χ Sqn−k of excess ≤ α(m) + 3 are Sq(0e−2, 2, 0, 1, v), Sq(0e−1, 3, 0, v), 
Sq(0e−1, 1, 1, vi), and if δ0 = 1, Sq(0e−1, 1, 3, 0, δ1, δ2, . . .). Then, with ι = ιk,

χ Sqn−k ι = (Sq(0, 1, v)ι)2
e−1

+ (Sq(0, v)ι)2
e

+
∑
δi=1

(Sq(1, vi)ι)2
e

+ ε(Sq(3, 0, δ1, . . .)ι)2
e

.

Mod im(Sq1), this equals Y 2e−1 , where Y = Sq(0, 1, v)ι + (Sq(0, v)ι)2, since the terms after the first two 
are in im(Sq1), similarly to (2.8). This Y is a generalization of Sq2 Sq1, and satisfies Sq2 Y = 0, Sq1(Y ) =
Sq(1, 1, v)ι, and Sq2(Sq(1, 0, v)ι) = Y . Let

B1 = Y 2e−1−3 Sq(1, 0, v)ι(Sq(1, 1, v)ι)2

B2 = Y 2e−1−4 Sq(0, 0, v)ι(Sq(1, 1, v)ι)3

B3 = Y 2e−1−4(Sq(2, 0, v)ι)2(Sq(1, 1, v)ι)2

B4 = Y 2e−1−4(Sq(0, v)ι)2 Sq(1, 0, v)ι(Sq(1, 1, v)ι)2.

One can verify the following equations. Summing them yields the desired conclusion, Y 2e−1 ∈ im(Sq1, Sq2).

Sq2(Y 2e−1−1 Sq(1, 0, v)ι
)

= Y 2e−1
+ B1

Sq1(Y 2e−1−3 Sq(0, 0, v)ι(Sq(1, 1, v)ι)2
)

= B1 + B2

Sq2(Y 2e−1−4 Sq(0, 0, v)ι · Sq(2, 0, v)ι(Sq(1, 1, v)ι)2
)

= B2 + B3 + B4

Sq1(Y 2e−1−3(Sq(2, 0, v)ι)2 Sq(1, 1, v)ι
)

= B3

Sq1(Y 2e−1−4(Sq(0, v)ι)2 Sq(0, 0, v)ι(Sq(1, 1, v)ι)2
)

= B4.

Again let n = 3 ·2e+2e+2m with m =
∑

i≥0 δi2i and v = (δ0, δ1, . . .). We will now show that χ Sqn−k ιk /∈
(Sq1, Sq2) when k = α(m) +4 = α(n) +2. By Lemma 2.6(b), χ Sqn−k has many summands of excess k (and 
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none with smaller excess). Letting v′ denote v with the addition of one (. . . , 0, 2, −1, 0, . . .), v′′ obtained 
from v by two such additions, and v0 being v with δ0 = 1 changed to δ0 = 0, we list these now.

Sq(0e−2, 2, 2, 0, v)ιk = (Sq(2, 0, v)ιk)2
e−1

Sq(0e−3, 2, 1, 0, 1, v)ιk = (Sq(1, 0, 1, v)ιk)2
e−2

Sq(0e−2, 2, 0, 1, v′)ιk = (Sq(0, 1, v′)ιk)2
e−1

Sq(0e−1, 3, 0, v′)ιk = (Sq(0, v′)ιk)2
e

Sq(0e−1, 1, 1, v′′)ιk = (Sq(1, v′′)ιk)2
e

Sq(0e−2, 2, 0, 3, v0)ιk = (Sq(0, 3, v0)ιk)2
e−1

Sq(0e−1, 3, 2, v0)ιk = (Sq(2, v0)ιk)2
e

.

Similarly to the proof of part (d), we will construct a homomorphism φ from Hn(K(Z2, k); Z2) to Z2
sending (Sq(2, 0, v)ιk)2

e−1 and nine other specified monomials to 1, and all others to 0, and annihilating 
(im(Sq1, Sq2)). The above monomials other than the first are sent to 0, so we need not worry about them.

We will take some notational shortcuts, writing (r1, r2)p for Sq(r1, r2, 0, v)ιk)p, and similarly with r2
omitted. The ten monomials Ci that are mapped to 1 by φ are listed below.

C1 = (2)2
e−1

C2 = (2)2
e−1−4(3)2(0, 2)

C3 = (2)2
e−1−4(1, 2)(0, 3)

C4 = (2)2
e−1−3(3)(1, 2)

C5 = (0)(2)2
e−1−4(3)(0, 3)

C6 = (0)(2)2
e−1−3(3)2

C7 = (2)2
e−1−8(3)2(0, 2)(1, 2)(0, 3)

C8 = (2)2
e−1−7(3)3(0, 2)(1, 2)

C9 = (0)(2)2
e−1−8(3)3(0, 2)(0, 3)

C10 = (0)(2)2
e−1−7(3)2(1, 2)(0, 3).

Note that C7 through C10 are only present for e ≥ 4. The only relations involving Sq1(M) or Sq2(M)
involving any of the Ci are as follows, where again ≡ is mod monomials which are not one of our Ci.

Sq1((2)2
e−1−4(0, 2)(0, 3)

)
= C2 + C3

Sq1((2)2
e−1−3(3)(0, 2)

)
= C2 + C4

Sq1((0)(2)2
e−1−3(0, 3)

)
≡ C5 + C6

Sq2((2)2
e−1−2(0, 2)

)
= C1 + C2

Sq2((0)(2)2
e−1−4(3)(1, 2)

)
≡ C4 + C5

Sq2((0)(2)2
e−1−1) ≡ C1 + C6

Sq1((2)2
e−1−7(3)(0, 2)(1, 2)(0, 3)

)
≡ C7 + C8

Sq1((0)(2)2
e−1−7(3)2(0, 2)(0, 3)

)
≡ C9 + C10
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Sq2((2)2
e−1−6(0, 2)(1, 2)(0, 3)

)
≡ C3 + C7

Sq2((2)2
e−1−5(3)(0, 2)(1, 2)

)
≡ C4 + C8

Sq2((0)(2)2
e−1−8(3)3(0, 2)(1, 2)

)
≡ C8 + C9

Sq2((0)(2)2
e−1−6(3)(0, 2)(0, 3)

)
≡ C5 + C9

Sq2((0)(2)2
e−1−5(1, 2)(0, 3)

)
≡ C3 + C10

Sq2((0)(2)2
e−1−5(3)2(0, 2)

)
≡ C2 + C6

Sq2((0)(2)2
e−1−9(3)2(0, 2)(1, 2)(0, 3)

)
≡ C7 + C10.

Relations 7 though 14 are only relevant for e ≥ 4, and the last one for e ≥ 5. Some relations useful in the 
analysis are, in our shorthand notation, Sq1(0, 3) = (3)2, Sq2(0, 2) = (2)2, and Sq2(1, 2) = (0, 3).

Since the only elements of im(Sq1, Sq2) which involve any Ci involve an even number of Ci, we conclude 
that φ(im(Sq1, Sq2)) = 0. �
3. Existence of manifolds, I

We begin this section by presenting a proof of the “if” part of Theorem 1.1. By Theorem 1.2(a), we must 
show that, for k as in part (i) of Theorem 1.3, a mod-2 homology class dual to χ Sqn−k ιk is the reduction 
of an integral class.

For n = 4m + b with 1 ≤ b ≤ 3 and k = α(m) + b, similarly to the first part of the proof of part (b) of 
Theorem 1.3, χ Sqn−k ιk contains the term Sq(0, ε2, . . . , εr), and so Sq1 χ Sqn−k ιk �= 0. This implies that a 
dual mod-2 homology class is the reduction of an integral class since the composite

Hn+1(X;Z2)
∂−→ Hn(X;Z) ρ2−→ Hn(X;Z2)

is dual to Sq1.
If n = 2eu with u odd and e ≥ 2, and k = α(n) + 1, then, by the proof of part (c), χ Sqn−k ιk =

(Sq(E′)ιk)2
e−1 where exc(E′) = k − 2 and the first entry of E′ is 0. Let x = Sq(E′)ιk. In [2, Theorem 

5.5] or [4, Theorem 1.3.2], it is shown that for such a class x (even-dimensional primitive with Sq1 x �= 0), 
de(x2e−1) �= 0 for all e in the cohomology Bockstein spectral sequence, and then, by [2, Theorem 4.7] or [4, 
Theorem 2.4.4], this implies that an integral homology class dual to x2e−1 has order 2e. This completes the 
proof of the “if” part of Theorem 1.1.

Next we prove Theorem 1.5 for n ≤ 15. Recall from Theorem 1.2 that we need that χ Sqn−k ιk /∈
im(Sq1, Sq2) and a dual class is in the image from kon(K(Z2, k)).

The n ≤ 7 result can be seen from the fact that elements Sq(R) not in im(Sq1, Sq2) satisfy | Sq(R)| +
exc(R) ≥ 8, so if Sq(R)ιk /∈ im(Sq1, Sq2), then n = | Sq(R)| + k ≥ 8.

For n = 8, the smallest possible value of k in Theorem 1.3(ii) is 2, while for 9 ≤ n ≤ 15, it is k = n − 7. 
Detailed Adams spectral sequence (ASS) calculations, discussed below, show that in the ASS converging 
to ko∗(K(Z2, k)), χ Sq6 ι2 is a permanent cycle, so yields the desired element in ko8(K(Z2, 2)), while for 
9 ≤ n ≤ 12, χ Sq7 ιk supports a nonzero d2-differential for 2 ≤ k ≤ 5, but not for 6 ≤ k ≤ 8. For 9 ≤ n ≤ 12, 
we next try χ Sq6 ιk with k = n − 6, and it is clear from Fig. 3.2 that there are no possible differentials on 
this class when k = 3 (n = 9) and hence also not for larger values of k. Once we have verified these claims, 
Theorem 1.5 follows for n ≤ 15.

The E2-term of the ASS converging to ko∗(K(Z2, k)) is ExtA1(H∗(K(Z2, k); Z2), Z2), where A1 is gen-
erated by Sq1 and Sq2. For 2 ≤ k ≤ 6 and ∗ ≤ k + 8, these are shown in Figs. 3.1, 3.2, and 3.3. These were 
obtained by calculating minimal resolutions of H∗(K(Z2, k); Z2) as A1-modules. See, e.g., [14, pp. 121–125]. 
The classes involved in the key d2-differentials are circled.
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Fig. 3.1. ko∗+2(K(Z2, 2)) → H∗+2(K(Z2, 2);Z).
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Fig. 3.2. ko∗+3(K(Z2, 3)) → ko∗+4(K(Z2, 4)).
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Fig. 3.3. ko∗+5(K(Z2, 5)) → ko∗+6(K(Z2, 6)).

We establish the differential when k = 2, and use morphisms of minimal resolutions to see that the circled 
classes map as indicated as k increases. For k = 2, we use the morphism ko∗(K(Z2, 2)) → H∗(K(Z2, 2); Z). 
This is depicted in Fig. 3.1. The d2-differential in ASS(H∗(K(Z2, 2); Z)) is implied by results of [2] or 
[4] used earlier. This implies d2(A) = B (not pictured) in ASS(ko∗(K(Z2, 2))). We show below that the 
d2-differential from C to D is implied by the action of the ASS of bo∗ on that of ko∗(K(Z2, 2)).

Let τ (resp. h0) denote the element of E2(bo) corresponding to the filtration-3 generator of π4(bo) (resp. 2). 
Then τ ·A = h3

0C and τ ·B = h3
0D. This can be seen from the minimal resolutions. Thus

h3
0d2(D) = d2(h3

0D) = d2(τB) = τ · d2(B) = τ ·A = h3
0C,

so d2(D) = C.
This determination of ko∗(K(Z2, 2)) was done, in a similar manner but a somewhat different context, in 

[14]. Many of our deductions here for other ko∗(K(Z2, k)) were also made there, using a different argument.

4. Existence of manifolds, II

In this section, we prove Theorem 1.5 for n > 15. Let Kk = K(Z2, k) and ExtB(X) = ExtB(H∗X, Z2). 
Here B = A1 or E1, the latter being the exterior algebra on the Milnor primitives Q0 = Sq1 and Q1 =
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Table 2
E1 action on generators of H∗(K2).

x u2 u3 u5 u9 u17 u33

Q0x u3 0 u2
3 u2

5 u2
9 u2

17

Q1x u5 u2
3 0 u4

3 u4
5 u4

9

Sq(0, 1). The E2-term of the ASS converging to ku∗(X) is ExtE1(X), and there is a nice morphism ko∗(X) →
ku∗(X). Theorem 1.5 for n > 15 follows from Theorem 1.2(b), Theorem 1.3(ii), and the following result, 
the proof of which requires detailed ASS calculations.

Theorem 4.1.
i. For n = 16 and 32, the element of Ext0,nA1

(K2) dual to χ Sqn−2 ι2 is a permanent cycle in the ASS 
converging to ko∗(K2).

ii. For n = 17 (resp. 33), the element of Ext0,nE1
(K2) dual to χ Sqn−2 ι2 supports a nonzero d4 (resp. d8) 

differential in the ASS converging to ku∗(K2).
iii. The element of Ext0,18A1

(K3) dual to χ Sq15 ι3 is a permanent cycle in the ASS converging to ko∗(K3).

Part (ii) implies the analogous result for ko∗ since the morphism ko∗X → ku∗X is induced by a morphism 
of spectral sequences. That elements dual to χ Sq14 ι3, χ Sq30 ι3, and χ Sq15 ιk for 4 ≤ k ≤ 8 are permanent 
cycles follows from parts (i) and (iii) by naturality.

The remainder of the paper is devoted to proving Theorem 4.1. In [14, Section 5], the second author 
computed ExtA1(K2) through dimension 36. An incorrect deduction was made regarding some differentials 
in this ASS around dimension 33, but we have verified that its A1-module splitting and determination of 
associated Ext groups is correct. Although not explicitly noted there, one can read off that Exts,tA1

(K2) = 0
for s > 0, t − s ≡ 7 (mod 8), t − s < 39. This is all that is required for our Theorem 4.1[i.].

For part (ii), we give the complete calculation of the ASS for ku∗(K2) through dimension 34, except for 
filtration-0 Z2’s corresponding to free E1 summands. In this range, H∗(K2; Z2) is a polynomial algebra on 
classes u2 = ι2, u3 = Sq1 ι, u5 = Sq2,1 ι, u9 = Sq4,2,1 ι, u17 = Sq8,4,2,1 ι, and u33 = Sq16,8,4,2,1 ι. The E1
action is given in Table 2.

With P (resp. E) denoting a polynomial (resp. exterior) algebra, in this range the Q0-homology is 
P [u2

2] ⊗E[x5], where x5 = u5 + u2u3, and Q1-homology is

P [u2
2] ⊗E[x9, x17, u

2
9, u

2
17],

where x9 = u9 + u3
3 and x17 = u17 + u2u

3
5. There is an E1-submodule N with a single nonzero element in 

gradings 5, 7, 8, 9, 10, with generators x5, x7 = u2u5, and x9, with Q0x7 = Q1x5 and Q1x7 = Q0x9. It has 
a Q0-homology class x5, and a Q1-homology class x9. The beginning of the E2-term for 〈u2i+2

2 〉 ⊕ u2i
2 N is 

depicted in Fig. 4.2.
Comparison with the results for H∗(K2; Z) in [2] cited early in Section 3 shows that there is a dν(4i+4)-

differential between the first pair of towers in this chart, where ν(−) denotes the exponent of 2 in an 
integer. This differential is promulgated in each chart by the action of v1 ∈ E1,3

2 (bu). The v1-periodic classes 
remaining after removing classes involved in these differentials are, in the range being considered here, 
v1-towers on u4

2, u8
2, h0u

8
2, u12

2 , u16
2 , h0u

16
2 , and h2

0u
16
2 . These will appear as lines of slope 1/2 in Fig. 4.3. 

Here h0 is the Ext element corresponding to multiplication by 2. We are abusing notation here by writing 
a cohomology class to denote an Ext class dual to it.

The submodules u2i+2
2 and u2i

2 N account for all of the Q0-homology of H∗K2. Through grading 35, the 
remaining Q1-homology classes are

P [u2
2] ⊗E[x9] ⊗ 〈x17, u

2
9, u

2
17, u

2
9x17〉.
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4i+ 104 6 8

Fig. 4.2. ExtE1 (〈u
2i+2
2 〉 ⊕ u2i

2 N).

8 12 16 20 24 28 32

u4
2

•

•

•

u8
2

•

•

•

• •

•

x17

•

•

u12
2

•

•

u4
2x17

•

•

•

•

•

•

•

•

•
u2

2x9x17
u16

2
u8

2x17

x33

•

•

••

•

Fig. 4.3. v1-periodic classes in part of ASS for ku∗(K2).

Let x33 = u33 +u2u3u
2
5u

2
9. There are Q0-free E1-submodules M4 and M5 such that M4 has a single nonzero 

class in gradings 17 and 18, and M5 in gradings 33, 34, 35, and 36, realizing the Q1-homology classes x17, 
u2

9, u2
17, and u2

9x17, and beginning with x17 and x33, respectively. Then the inclusion of the E1-submodule

P [u2
2] ⊗ (〈1〉 ⊕N ⊕M4 ⊕ (N ⊗M4) ⊕M5)

into H∗(K2) induces an isomorphism in Q0- and Q1-homology through dimension 42, and hence an isomor-
phism in ExtE1 above filtration 0 through roughly the same range. For any Q0-free E1-module M , M ⊗N

and x9M have isomorphic ExtE1 in positive filtration. ExtE1(M4) is a single v1-tower beginning in grading 
17, while ExtE1(M5) has v1-towers beginning in 33 and 35, connected by h0.

The initial differential implied by integral homology was d2(x9) = v2
1u

2
2. The derivation property of 

differentials implies that d2(u4i
2 x9x17) = v2

1u
4i+2
2 x17. Listing only v1-periodic classes, the elements remaining 

after the above considerations are depicted in Fig. 4.3.
We claim that d4(x17) = v4

1u
4
2. To see this, let f : CP∞ → CP∞ denote the H-space squaring map, and 

g : CP∞ → K2 correspond to the nonzero element of H2(CP∞; Z2). The composite g ◦ f is trivial, and so 
g∗ : ku∗(CP∞) → ku∗(K2) sends all elements in im(ku∗(CP∞) f∗−→ ku∗(CP∞)) to 0. Let βi ∈ ku2i(CP∞)
be dual to yi, where y generates ku2(CP∞). The [2]-series for ku is 2x + v1x

2, and it follows from [13, 
Theorem 3.4] that f∗(βj) equals the coefficient of xj in 

∑
i≥1

βi(v1x
2 + 2x)i. Letting j = 8, we obtain that 

the following element maps to 0 in ku∗(K2):

v4
1β4 + 40v3

1β5 + 240v2
1β6 + 448v1β7 + 28β8.
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Table 3
Generators of H∗(K3; Z2).

x Sq1 x Sq2 x Q1x

g3 ι3 g4 g5 g6 + g2
3

g4 Sq1 ι 0 g6 g7
g5 Sq2 ι g2

3 g7 g2
4

g6 Sq2,1 ι g7 0 0
g7 Sq3,1 ι 0 0 0
g9 Sq4,2 ι g2

5 0 g4
3

g10 Sq4,2,1 ι g11 g2
6 g13

g11 Sq5,2,1 ι 0 g13 g2
7

g13 Sq6,3,1 ι g2
7 0 0

g17 Sq8,4,2 ι g2
9 0 g4

5
g18 Sq8,4,2,1 ι g19 g2

10 g21
g19 Sq9,4,2,1 ι 0 g21 g2

11
g21 Sq10,5,2,1 ι g2

11 0 0

Table 4
Submodules of H∗(K3).

i A1-generators of Mi H∗(−;Q0) H∗(−;Q1)

3 g3, g3g4 g2
6 g2

3

9 g9, g2
3g5, g3g

3
4 , x19 0 g2

5

10 g′
10 g′

13 g′
11

12 g3g9, g3
5 , g5

3g4 0 g2
3g

2
5

13 g3g
′
10, g

2
3g

′
10, g3g4g

′
13 0 g2

3g
′
11

17 g17, g2
5g9 0 g2

9

18 g18 g2
10 g2

10

21 g21 + g10g11, Sq12,6,3,1 ι + g3
6g7 g21 + g10g11 0

All classes except the first map to 0 in ku∗(K2). Since g∗(β4) = u4
2, we deduce that v4

1u
4
2 = 0 in ku∗(K2). The 

only way that this can occur is by the asserted d4-differential. By the derivation property, d4(u8
2x17) = v4

1u
12
2 .

Similarly to this, using CP∞, we obtain that v8
1u

8
2 = 0 in ku∗(K2). The only way that this can happen 

is with d5(u4
2x17) = h0v

4
1u

8
2 and d8(x33) = v8

1u
8
2. Since the Ext class x33 evaluates nontrivially on χ Sq31 ι2, 

this completes the proof of part (ii) of Theorem 4.1.
We will determine the ko-homology of K(Z2, 3) through grading 20, providing more detail than we did in 

the smaller range of dimensions considered in Section 3. Through dimension 24, H∗(K3; Z2) is a polynomial 
algebra on the generators listed in Table 3.

From this, one readily determines that through grading 20 the Q0-homology classes are g2
6 , g′13 = g13 +

g6g7, and g2
10, while Q1-homology classes are g2

3 , g2
5 , g′11 = g11 + g4g7, g2

3g
2
5 , g2

3g
′
11, g2

9 , and g2
10. We also let 

g′10 = g10 + g4g6.
In Table 4, we list eight A1-submodules Mi whose direct sum carries exactly the Q0- and Q1-homology 

of H∗(K3) through grading 20. Thus the inclusion of this sum into H∗(K3) induces an isomorphism in 
Exts,tA1

for s > 0 in this range. We just list the A1-generators of the modules. In Figs. 4.4 and 4.5 we will 
depict ExtA1(Mi). The subscript of Mi is the grading of the bottom class. The chart for the second of each 
pair of summands appears in red. For i = 12 and 13, xi generates a free A1-submodule but is necessary for 
inclusion since Sq2,1 xi+3 = Sq2,2,2 xi. Some of the modules can be extended beyond grading 22 by adding 
higher generators. In Table 4, x19 = g2

4g5g6 + g3g4g
2
6 + g3g

4
4 . We have included M21 because its Ext impacts 

that of M18.
The differentials follow as before from the fact ([2] or [4]) that H12(K3; Z) ≈ Z/4 ≈ H20(K3; Z).
The only possible differential on the class A in Ext0,18A1

(M18) would be to hit the element B in Ext4,21A1
(M9). 

However, since h1A = 0 but h1B �= 0 such a differential cannot occur. Thus g18, which is the desired class 
χ Sq15 ι3, is a permanent cycle, as claimed. We expect that d3 is nonzero from most of M13 to M9, but this 
is not required for our conclusion.
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Fig. 4.4. Ext-chart for M3 ⊕ M10 (left), and M18 ⊕ M21. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)
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Fig. 4.5. Ext-charts for M9 ⊕ M13 (left), and M12 ⊕ M17.
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