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THE CONNECTIVE MORAVA K-THEORY OF THE SECOND MOD p
EILENBERG-MACLANE SPACE

DONALD M. DAVIS, DOUGLAS C. RAVENEL, AND W. STEPHEN WILSON

ABSTRACT. We develop tools for computing the connective n-th Morava K-theory
of spaces. Starting with a Universal Coefficient Theorem that computes the coho-
mology version from the homology version, we show that every step in the pro-
cess of computing one is mirrored in the other and that this can be used to make
computations. As our example, we compute the connective n-th Morava K-theory
of the second mod p Eilenberg-MacLane space.

1. INTRODUCTION

Being able to compute is central to much of algebraic topology. Computing gen-
eralized (co)homology theories of basic spaces usually runs from difficult to im-
possible. One exception has been the extraordinary K-theories of Jack Morava,
K(n)∗(X). They have a Kunneth isomorphism that makes them more tractable to
computations than most.

There is a connective version of Morava K-theories, k(n)∗(X), and in this paper
we make some progress towards computing with this. In particular, we develop
some tools that can be applied to this problem in general, and then we apply them
to compute the n-th connective Morava K-theory of the second mod p Eilenberg-
MacLane space, K2 = K(Zp, 2), where Zp is the integers modulo the prime p.

The origin of this problem is now securely in the past. It was known from Anderson-
Hodgkin, [AH68], that K(1)∗(K2) was trivial. The third author searched, peri-
odically over the decades, for the differentials in the Atiyah-Hirzebruch spectral
sequence (AHSS) that would reduce the already small H∗(K2; k(1)∗) to zero (at
p = 2). The differentials in the AHSS are the same as those in the Adams spectral
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sequence (ASS), so this paper finally gives the third author great satisfaction. The
project grew into this paper.

The main computation of the paper is to compute both k(n)∗(K2) and k(n)∗(K2)
as k(n)∗ (and k(n)∗) modules. The n = 1 case is essential for the first and third
authors’ pursuit of ku∗(K2) and ku∗(K2) for all primes.

One of our main tools is obtained by combining results of Robinson and Lazarev
for computational purposes.

Theorem 1.1. For X of finite type with K(n)∗(X) finitely generated over K(n)∗, there
is a Universal Coefficient spectral sequence (UCT), that collapses:

Exts,tk(n)∗
(k(n)∗(X), k(n)∗) ⇒ k(n)s+t(X)

Robinson, in [Rob87], created the UCT, and in [Rob89], he, and also Lazarev in
[Laz01], show that k(n) satisfies the UCT criteria. We show the UCT collapses.

From this result, we prove the next important tool.

Theorem 1.2 (The Pairing). For X of finite type with K(n)∗(X) finitely generated over
K(n)∗, there is a differential dr(q) = vrm in the ASS for k(n)∗(X) if and only if there is
a corresponding dr(m

′) = vrq′ in the ASS for k(n)∗(X), with |q| = |q′| and |m| = |m′|.

It is the interaction between k(n) cohomology and homology from these two re-
sults that allows us to do our computation. Theorem 1.1 gives a duality of sorts
between k(n)∗(X) and k(n)∗(X), but Theorem 1.2 goes even further and says that
there is a duality every step of the way in the computation. In our case, we have
that K2 is an H-space so both Adams spectral sequences are multiplicative. Al-
though this does not give us a Hopf algebra, there is enough similarity in the
structure that we can make good use of it.

The plan of the paper is to state the results of the main computation in the next
section. We set up some notation in Section 3. In Section 4 we compute the E2

term of the ASS for k(n)∗(K2). We give some necessary definitions and numbers
in Section 5. In Section 6, we prove the two theorems in the introduction and
establish some other preliminaries we need. All the hard work is done in Section
7 where the differentials are computed. The results for k(n)∗(K2) are all collected
in Section 8 and the final section is devoted to describing the results at p = 2.
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2. STATEMENT OF RESULTS

In this section we define only what we need to efficiently state the results of our
main computation of k(n)∗(K2). Many details will be properly developed later.

We need to establish some basic notation. All our cohomology and homology
groups will be mod p. The connective n-th Morava K-theory spectrum, k(n), has
k(n)∗ = Zp[v] with |v| = −2(pn−1). This v is usually called vn but we will suppress
the n.

We let P [x], E[x], and Γ[x] be the polynomial, exterior, and divided power algebras
on x over Zp. In addition, we need the truncated polynomial algebra, TPk[x] =
P [x]/(xk), and its dual, Γk[x]. The algebra structure of Γ[x] is ⊗k≥0TPp[γpk(x)]. For
p = 2, this degenerates to an exterior algebra.

For an algebra A, we let A denote the augmentation ideal of A, which, in our case,
is always just the positive degree elements.

To compute with the ASS, we need (for p an odd prime)

H∗K2 = P [ι2] ⊗
i>0

P [zi] ⊗
i≥0

E[ui]

|zi| = 2(pi + 1) |ui| = 2pi + 1
(2.1)

Let yj = ιp
j

2 . In particular, ι2 = y0 and ιp2 = yp0 = y1. In general, ypj = yj+1 with
|yj| = 2pj .

We define wn+i, for 0 ≤ i ≤ n (with z0 = 0)

(2.2) wn+i = un+i + un−i(zi)
pn−pn−i

and inductively

(2.3) wn+j+(n+1) = yp−1
j wn+jz

pn−1
n+j+1

We can now state the main computational result of the paper.

Theorem 2.4. There are explicit numbers, r(j) and r′(j) (see Section 5), such that the
odd primary k(n)∗(K2), as a k(n)∗-module, is the sum of the following:

P [v] ⊗
0<i<n

TPpi [zn−i]
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0<j

TPr(j)[v]⊗ P [yj+1]⊗ TPp−1[yj]⊗ E[wn+j] ⊗
0<i≤n

E[wn+j+i] ⊗
0≤s

TPpn [zn+j+s+1]

⊕
0≤j

TPr′(j)[v]⊗ P [yj+1] ⊗
0<i≤n

E[wn+j+i]⊗ TP pn [zn+j+1] ⊗
0<s

TPpn [zn+j+s+1]

plus a computable family of Zp’s annihilated by v.

Remark 2.5. If we invert v, it kills all but the first line and it becomes K(n)∗(K2),
[RW80][dual to Theorem 11.1]. This P [v]-free part is all that appears in negative
degrees, where it is finite in each degree. In addition, every positive degree is also
finite.

3. OUR ASS SPECTRAL SEQUENCE NOTATION

The k(n) under consideration here is the the connective version of Morava’s n-
th extraordinary K-theory. We have k(n)∗ = P [v] with |v| = −2(pn − 1) and
k(n)∗ = P [v] with |v| = 2(pn − 1). It has cohomology, H∗(k(n)) = A/A(Qn)
where A is the mod p Steenrod algebra and Qn is the n-th Milnor primitive. We
need the algebra E[Qn]. The ASS for k(n)∗(K2) has Es,t

2 = Exts,tA (H∗(k(n)), H∗K2).
The change of rings theorem turns this into Exts,tE[Qn]

(Zp, H
∗K2). This converges to

k(n)−(t−s)(K2). We use the usual grading for the ASS so that Es,t
r is at the (t− s, s)

coordinates but then we give the negative x-axis positive degrees, rewriting Es,t
r

as Gr
s−t,s in position (t− s, s). We use dr for our cohomology differentials.

We also need the ASS for k(n)∗(K2), and need to have distinct notation to clearly
separate it from the cohomology notation. It has Es,t

2 = Exts,tA (H∗(k(n) ∧K2),Zp).
The change of rings theorem turns this into Exts,tE[Qn]

(H∗K2,Zp). This converges to
k(n)t−s(K2). We use the usual grading for the ASS so that Es,t

r is at the (t − s, s)
coordinates. Here we don’t need the negative grading, but to distinguish this from
the cohomology ASS, we write Es,t

r as Gt−s,s
r in position (t − s, s). Here we use dr

for the differential so we can keep track of which is which.

We need the E[Qn]-structure of H∗K2. Any E[Qn]-module M is the sum of a trivial
module and a free module. As a result, it is easy to compute Exts,tE[Qn]

(Zp,M) and
Exts,tE[Qn]

(M,Zp). We have |Qn| = 2pn − 1. Then Exts,tE[Qn]
(Zp,Zp) = P [v], with v ∈

Ext1,2p
n−1

E[Qn]
, but the convention for the sign of the degree of v depends on whether

we are computing cohomology (|v| = −2(pn − 1)) or homology (|v| = 2(pn − 1)).
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We have Exts,tE[Qn]
(Zp, E[Qn]) = Σ2pn−1Zp in G2

2pn−1,0 and Exts,tE[Qn]
(E[Qn],Zp) = Zp

in G0,0
2 .

4. THE Qn HOMOLOGY OF H∗K2 AND THE ASS E2 TERM

Following Tamanoi, [Tam99][Theorem 5.2], we have, at odd primes, zi = QiQ0ι2
(z0 = 0) and ui = Qiι2, giving us H∗K2 in equation (2.1). Continuing to follow
Tamanoi:

Qnzi = 0
Qnun = 0
Qnui = (Qn−1ui−1)

p 0 < i ̸= n

= zp
i

n−i 0 ≤ i < n

= zp
n

i−n 0 < n < i

The wn+i of equation (2.2) are modified un+i so that Qn(wn+i) = 0.

Rewrite H∗K2 as the associated graded object of a filtration:(
E[ui] ⊗

0≤i<n
P [(zn−i)

pi ]
)
⊗
(
E[u2n+i] ⊗

0<i
P [(zn+i)

pn ]
)

⊗
(
TPp[y0]⊗ E[wn]

)
⊗

0<i<n
TPpi [zn−i]

⊗P [y1] ⊗
0<i≤n

E[wn+i] ⊗
n<s

TPpn [zn+s]

Computing the Qn homology from this, the first line gives zero. The first part of
the second line gives E[yp−1

0 wn]. We rename yp−1
0 wn = wn+1/2. The second part of

the second line is what will give us K(n)∗(K2).

The Qn homology is:

(4.1) ⊗
0<i<n

TPpi [zn−i]⊗ P [y1]⊗ E[wn+1/2] ⊗
0<i≤n

E[wn+i] ⊗
0<s

TPpn [zn+s]

Theorem 4.2. We have elements v ∈ G2
−2(pn−1),1, y1 ∈ G2

2p,0, wn+i ∈ G2
2pn+i+1,0,

wn+1/2 ∈ G2
2(pn−1)+2p+1,0, and zj ∈ G2

2(pj+1),0. The E2 term of the odd primary Adams
spectral sequence for k(n)∗(K2) is

P [v] ⊗
0<i<n

TPpi [zn−i]⊗ P [y1]⊗ E[wn+1/2] ⊗
0<i≤n

E[wn+i] ⊗
0<s

TPpn [zn+s]
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plus a computable family of filtration-0 Z2’s annihilated by v coming from the E[Qn]-free
part of H∗K2.

Proof. The Qn homology of H∗K2 gives us the trivial E[Qn]-module part. The rest
is free over E[Qn]. We have already computed Ext for both kinds of modules. The
result follows. □

5. NUMBERS AND DEFINITIONS

Although we are only interested in odd primes until the last section, all of the for-
mulas and numbers in the section work for p = 2 except for one small deviation.

In this section we give some definitions and compute some numbers we need.
We already have elements yj , zj and wn+i. (The odd prime definitions for these
elements work for p = 2 with one minor exception.) This is in preparation for our
differentials

(5.1) dr(j)(yj) = vr(j)wn+j dr
′(j)(wn+j+1/2) = vr

′(j)zn+j+1

The second gives rise to the element wn+j+(n+1) previously defined by equation
(2.3) and the first defines

(5.2) wn+j+1/2 = yp−1
j wn+j

as we shall see in Section 7.

We collect some easily read off numbers

Lemma 5.3.

|yj| = 2pj j ≥ 0

|zj| = 2(pj + 1) j > 0

|wn+j+1/2| = 2pj(p− 1) + |wn+j|
|wn+j+(n+1)| = 2pj(p− 1) + |wn+j|+ 2(pn − 1)(pn+j+1 + 1)

q(k) = 1 + pn+1 + p2(n+1) + · · ·+ p(k−1)(n+1) = q(k − 1) + p(k−1)(n+1)

q(0) = 0
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Our prospective differentials, equations (5.1), obey the equations

|yj|+ 1 + 2r(j)(pn − 1) = |wn+j|
|wn+j+1/2|+ 1 + 2r′(j)(pn − 1) = |zn+j+1|

(5.4)

Lemma 5.5. We write j = i+ k(n+ 1) 0 ≤ j 0 ≤ i < n+ 1

|wn+j| = 2(pn − 1)
(
pi+1(pn − 1)q(k) + k + pi

)
+ 2pj + 1

|wn+j+1/2| = 2(pn − 1)
(
pi+1(pn − 1)q(k) + k + pi

)
+ 2pj+1 + 1

r(j) = pi+1(pn − 1)q(k) + k + pi

r′(j) = pj+1 − pi+1(pn − 1)q(k)− k − pi

pj+1 = r(j) + r′(j)

r(j + 1) > r′(j) > r(j) p odd
r(j + 1) > r′(j) ≥ r(j) p = 2

pj ≥ r(j) > pj−1

pj+1 − pj−1 > r′(j) ≥ pj+1 − pj

r
(
j + (n+ 1)

)
= r(j) + pj+1(pn − 1) + 1

r′
(
j + (n+ 1)

)
= r′(j) + pj+(n+1)(p− 1)− 1

Proof. The one exception for p = 2 comes when j ≤ n + 1 and we have r(j) =
r′(j) = 2j .

The proof of the first formula is the most complicated. It is done by induction on
k. We do it last. The same technique works for the last two formulas.

The formula for |wn+j+1/2| follows from the definition, equation (5.2), and the for-
mula for wn+j . The formulas for r(j) and r′(j) follow immediately from the first
two formulas and equations (5.4).

That pj+1 = r(j) + r′(j) is now obvious. The inequalities r(j + 1) > r′(j) > r(j)
and pj ≥ r(j) are left to the reader. We show r(j) > pj−1 to illustrate.

r(j) = pi+1(pn − 1)q(k) + k + pi = pi+1(pn − 1)q(k − 1) + pj − pj−n + k + pi.

Since pj − pj−n + pi > pj−1, we are done. This is even easier if k = 0.
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We do the formula for |wn+j| in detail. Our induction is on k. It is easy to start.
When k = 0, we have |wn+j| = |un+j| = 2pn+j + 1. We assume our formula for
|wn+i+(k−1)(n+1)| and use the inductive formula in Lemma 5.3. So |wn+j| =

2(pn − 1)
(
pi+1(pn − 1)q(k − 1) + k − 1 + pi

)
+ 2pi+(k−1)(n+1) + 1

+2pi+(k−1)(n+1)(p− 1) + 2(pn − 1)(pj + 1)

Replace the q(k − 1) and incorporate the last term into the first.

2(pn − 1)
(
pi+1(pn − 1)(q(k)− p(k−1)(n+1)) + k − 1 + pi + pj + 1

)
+2pi+(k−1)(n+1) + 1 + 2pi+(k−1)(n+1)(p− 1)

There is some cancellation in both rows giving

2(pn − 1)
(
pi+1(pn − 1)q(k) + k + pi + pi+1+(k−1)(n+1)

)
+2pi+1+(k−1)(n+1) + 1

Take out the last term in the top row.

2(pn − 1)
(
pi+1(pn − 1)q(k) + k + pi

)
+2(pn − 1)pi+1+(k−1)(n+1) + 2pi+1+(k−1)(n+1) + 1

The last row reduces giving the desired result.

2(pn − 1)
(
pi+1(pn − 1)q(k) + k + pi

)
+ 2pj + 1

□

6. PRELIMINARIES BEFORE THE PROOF

Lemma 6.1 ( Divisibility Criteria). If dr(q) = vrm, then |q|+ 1+ 2r(pn − 1) = |m|, i.e.
|m| − 1− |q| ≡ 0 (mod |v|).

Proof of Theorem 1.1. In [Laz01][Corollary 11.8] and [Rob89][Theorem 2.3], the odd
primary k(n) is shown to be A∞. In private communication, Lazarev says that his
argument for k(n) works just as well for p = 2.

In [Rob87][p. 257], Robinson produces a Universal Coefficient Theorem (UCT)
for A∞ spectra. In our case this gives the spectral sequence of Theorem 1.1. For
spaces of finite type with K(n)∗(X) finitely generated, k(n)∗(X) is the sum of a free
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module (of finite dimension) over k(n)∗ and a sum of torsion modules, TPk[v]. The
above Ext is easy to compute and everything is in Ext0 and Ext1. More precisely:

Ext0,∗k(n)∗
(k(n)∗, k(n)∗) = k(n)∗

Ext1,∗k(n)∗
(TPk[v], k(n)∗) = TPk[v]

with generator in Ext
1,|vk|
k(n)∗

and v ∈ Ext
0,−2(pn−1)
k(n)∗

The entire E2 term is in Ext0 and Ext1. This is peculiar to k(n). As a result, the
spectral sequence collapes. □

Proof of Theorem 1.2. If we have dr(q) = vrm in the ASS for k(n)∗(X), it means we
have (a cohomology) TPr[v] with generator in the degree of m. From the UCT, to
get this, we must have a (homology) TPr[v] with generator in the degree of q. To
get this in the ASS for k(n)∗(X), we must have a differential dr(m′) = vrq′ with the
mentioned degrees. Reverse the argument to get the other direction. □

Before we state the next result, we need

(6.2) H∗K2 = Γ[ι∗2] ⊗
i>0

Γ[z∗i ] ⊗
i≥0

E[u∗
i ]

Here we have y∗j = γpj(ι
∗
2) dual to yj in cohomology.

In Theorem 8.1, we compute the E2 term for the ASS for k(n)∗(K2). In particular,
Γ[y∗1] is there.

Lemma 6.3. The zj are all permanent cycles in the ASS for k(n)∗(K2) and there is a
non-zero differential dr(yj) for some r ≤ pj . In the ASS for k(n)∗(K2), vry∗j is hit by a
differential for some r ≤ pj .

Proof. Tamanoi, in [Tam97], (actually done much earlier in his 1983 masters thesis
in Japan), and then again later in [RWY98], the image of the map BP ∗(K(Zp, i)) →
H∗K(Zp, i) is computed. In particular, the answer for i = 2 contains the zj , where
j > 0. This map factors through k(n)∗(K2) so we conclude that the zj cannot
support a differential.

Setting bi ∈ k(n)2iCP∞, we consider the composition

CP∞ p
// CP∞ // K2
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Define b(s) =
∑

i bis
i and b(j) = bpj . Note that b(j) maps to y∗j ∈ k(n)∗(K2). We

follow [RW77][Theorem 3.8(ii)] and use the fact that for k(n), [p](s) = vsp
n . The

composition above takes b(s) to zero, but the first map takes b(s) → b(vsp
n
). In

particular, we see that vpjb(j) maps to zero, giving vp
j
y∗j = 0 ∈ k(n)∗(K2).

Since we must have a dr(m) = vry∗j with r ≤ pj , from Theorem 1.2, we must have
a corresponding dr(q′) = vrm′ with |q′| = 2pj = |y∗j |. By the time we get to the
point of worrying about yj , it will be the only element in degree |q′| and so must
be q′. □

7. THE SPECTRAL SEQUENCE

Theorem 7.1. In the odd primary Adams spectral sequence for k(n)∗(K2), the differen-
tials are:

For 0 < j dr(j)(yj) = vr(j)wn+j dr
′(j−1)(wn+j−1+1/2) = vr

′(j−1)zn+j .

Ignoring the permanent v-free terms and the previously created v-torsion

Er′(j−1)+1 = P [v, yj] ⊗
0≤i≤n

E[wn+j+i] ⊗
0≤s

TPpn [zn+j+s+1]

Er(j)+1 = P [v, yj+1]⊗ E[wn+j+1/2] ⊗
0<i≤n

E[wn+j+i] ⊗
0≤s

TPpn [zn+j+s+1]

Proof of Theorem 2.4. The action of dr(j) takes place in P [v, yj] ⊗ E[wn+j]. We can
break this up into P [v, yj+1] ⊗ TPp[yj] ⊗ E[wn+j]. It creates v-torsion TPr(j)[v] ⊗
P [yj+1]⊗ TPp−1[yj]⊗ E[wn+j].

The action of dr′(j) takes place in P [v] ⊗ E[wn+j+1/2] ⊗ TPpn [zn+j+1]. It creates v-
torsion TPr′(j)[v]⊗ TP pn [zn+j+1].

This is the correct description of k(n)∗(K2) as a k(n)∗-module. However, to be
precise, we might have to alter the generator names as follows. If, for example,
some P [v]/(vr(j)) generator in the theorem had vr(j) ̸= 0, it would have to jump
to a higher filtration, but there it would be vrx where x has a higher degree than
our generator. We could then adjust our generator by adding vjx for some j. This
would push our element to an even higher filtration, but this process has to stop
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in a finite number of steps. Despite the normal limitations of the ASS, in our case
we can discover the real k(n)∗-module structure. □

Proofs for Theorems 7.1 and 8.2. Our proof starts with showing the asserted differ-
entials must happen. Then we have to show that there are no additional differen-
tials. This is where the full power of The Pairing comes in.

We assume, inductively, we have Er′(j−1)+1. We must have a dr(yj) = vrq where q
is odd degree and r ≤ pj by Lemma 6.3. There are few odd degree elements in this
range. We will show that if q = wn+j+1, we would have r > pj . This eliminates all
q = wn+j+i, i > 1, because their degree is even higher. We want to show

|wn+j+1| − 1− |yj| > 2pj(pn − 1)

Replace wn+j+1 using equation (5.4) to get

|yj+1|+ 1 + 2r(j + 1)(pn − 1)− 1− |yj|.
It is enough to have r(j + 1) > pj , but this is in Lemma 5.5.

The only remaining elements of odd degree are ysjwn+j . However, since we know
wn+j meets the Divisibility Criteria, for this to meet it with s > 0, we must have s
at least pn − 1. Then the differential would be pj + r(j), and this is greater than pj

so can’t happen. We conclude that we must have dr(j)yj = vr(j)wn+j as desired.

The action of this differential takes place in P [v, yj]⊗E[wn+j] which can be broken
up as P [v, yj+1]⊗TPp[yj]⊗E[wn+j]. The remaining v-torsion free part is P [v, yj+1]⊗
E[wn+j+1/2], giving us Er(j)+1.

We already know the P [v]-free elements that survive. Since zn+j+1 is not one of
them but is a permanent cycle, we know that some vrzn+j+1 must be hit by a
differential coming from an odd degree element.

Lemma 7.2. If dr(wn+j+s) = vrzn+j+1, s > 0, then r ≤ r′(j−1) for n > 1. In the n = 1
case, dr(wn+j+s) = vrzn+j+1, s > 0, cannot exist.

Proof. For n > 1, it is enough to study the s = 1 case. We would have

|wn+j+1|+ 1 + 2r(pn − 1) = |zn+j+1|
Replace |wn+j+1| using equation (5.4)

|yj+1|+ 1 + 2r(j + 1)(pn − 1) + 1 + 2r(pn − 1) = |zn+j+1|
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Plugging in the numbers for yj+1 and zn+j+1 and rearranging, we get

2r(j + 1)(pn − 1) + 2r(pn − 1) = 2pn+j+1 − 2pj+1 = 2pj+1(pn − 1)

So, r = pj+1 − r(j + 1).

We need to show this is ≤ r′(j − 1). Using the formulas from Lemma 5.5 for
r(j + n+ 1) and r′(j + n+ 1), we have pj+1 − r(j + 1) = pj+1−n − r(j − n)− 1 and
r′(j − 1) = r′(j − n − 2) + pj−1(p − 1) − 1. When n > 1, the pj clearly dominates
and we get our inequality. The induction is easy to start. The inequality is false
for n = 1. This implies the s > 1 case.

We are left with showing that the differential cannot exist when n = 1. Our real
interest is in showing what can and can’t hit vrzn+j+1. The numbers make it easy
to rule out wn+j+2. The remaining odd degree elements are wn+j+1 and wn+j+1/2.
Both meet the Divisibility Criteria, the first with pj+1− r(j+1) and the second with
r′(j). All we need now is to rule out wn+j+1 in this n = 1 case.

We know what must happen with dr(j)(yj), so we can ask what happens with
yj+1 since dr(j) is zero on it. We know that the differential on yj+1 must have
r ≤ pj+1. It is an easy check to see that if dr(yj+1) = vrwn+j+2, then r = pj+1 +
r(j + 2), which is too big. Our only choices are wn+j+1 and wn+j+1/2. If we can
show that wn+j+1/2 doesn’t work, then it would have to hit wn+j+1 and so this
would not be available to hit zn+j+1. This is all a bit contorted just because n = 1
is special sometimes. Doing our usual kinds of numerical computations, we see
that if dr(yj+1) = vrwn+j+1/2 for n = 1, then r = r(j). But dr(j) is zero on yj+1. □

Lemma 7.2 rules out all wn+j+i with i > 0. Now the only odd degree elements left
are the ysj+1wn+j+1/2. We know wn+j+1/2 would work with differential r′(j) because
of the Divisibility Criteria. The Divisibility Criteria requires s to be a multiple of pn−
1. The lowest non-zero s is s = pn − 1 and this would give a differential of length
r′(j)−pj+1, but pj+1 > r′(j) so this cannot happen. We must have dr

′(j)(wn+j+1/2) =

vr
′(j)zn+j+1.

The action of dr′(j) takes place in P [v] ⊗ E[wn+j+1/2] ⊗ TPpn [zn+j+1] and results in
the P [v]-free part being E[wn+j+(n+1)], giving us Er′(j)+1.

Having computed these differentials, we can use The Pairing of Theorem 1.2 to
get the dual differentials for the ASS for k(n)∗(K2) in Theorem 8.2. We first show
dr(j)(w

∗
n+j) = vr(j)y∗j . We know, from Lemma 6.3 that some differential must hit
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some vry∗j with r ≤ pj . From The Pairing, we know that some element, q, in the
degree of y∗j must have dr(j)(m) = vr(j)q. However, in Er′(j−1), we see that y∗j is
the only element there is in that degree and w∗

n+j is the only odd degree generator
in the correct degree. The only option is the expected result. Again, the pairing
gives us a dr′(j) in degrees corresponding to z∗n+j+1 and w∗

n+j+1/2. There are no
other options, so dr′(j) is as advertised.

Having computed these two must-have differentials, it gives us the description
for

(7.3) Er′(j)+1 = P [v, yj+1] ⊗
0≤i≤n

E[wn+j+i+1] ⊗
0≤s

TPpn [zn+j+s+2]

We are not done. We must show that there is no action of a dr on this for r′(j−1) <
r ≤ r′(j).

There are no differentials on the z’s because they are permanent cycles. This leaves
only the w’s and yj+1. The lowest odd degree element is wn+j+1 and we know
that such a differential on yj+1 would be r(j + 1) > r′(j), so we cannot have a
differential on yj+1.

All that is left is to show there is no r in this range with dr(wn+j+i+1) ̸= 0. Let r
be the smallest r in the range r′(j − 1) < r ≤ r′(j) with dr(wn+j+i+1) = vrm ̸= 0,
for the wn+j+i+1 of smallest degree. We know from Theorem 1.2, The Pairing, that
there is an m′, with |m′| = |m|, in the homology ASS with dr(m

′) = vrq′ ̸= 0. If
m′ is decomposable, then there must be an element, m′′, with lower degree than
m′ with dr(m

′′) = vrq′′ ̸= 0. For example, if m′ = ab, then dr(m
′) = dr(a)b ± adr(b)

and either dr(a) or dr(b) is non-zero. In either case, we get our m′′ with degree
less than |m′|. Again, by The Pairing, there is a q in the cohomology ASS with
|q| = |q′′| < |wn+j+i+1| with dr(q) ̸= 0. This contradicts our choice of wn+j+i+1.
We conclude that if there is such an r, m′ is indecomposable. Theorem 1.2, The
Pairing, is pretty vague about what the corresponding elements are. All it really
gives us are degrees. However, we know where all the even degree (and since we
started with the odd degree wn+j+i+1, we are looking for an even degree element)
elements are in our homology Er′(j)+1. These elements are the y∗k, k > j, and the
γpk(z

∗
n+j+s+2). We have similar looking elements in the cohomology Er′(j)+1. They

are not known to be ”dual” in any sense, but they are in the right degrees. All
we will use about these cohomology elements is their degree. If we can show that
there are no differentials that hit elements in these degrees, we are done.
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We have three main ways to show a differential cannot exist. (1) We can use the
Divisibility Criteria, (2) we can show that a prospective dr has r > r′(j), or (3) we
can show that r ≤ r′(j − 1).

The first we have to check to see if there is some s with dr(wn+j+i+1) = vrys. For
this, we must have

|wn+j+i+1|+ 1 + 2r(pn − 1) = |ys|
but we can replace the first term using equation (5.4)

|yj+i+1|+ 1 + 2r(j + i+ 1)(pn − 1) + 1 + 2r(pn − 1) = |ys|
so

|ys| − |yj+i+1| − 2 = 2ps − 2pj+i+1 − 2

is both positive and divisible by 2(pn− 1). Let s′ and (j+ i+1)′ be s and (j+ i+1)
mod n. Then, mod 2(pn − 1), this is 2ps

′ − 2p(j+i+1)′ − 2. This cannot be zero mod
2(pn − 1) so the Divisibility Criteria tells us we cannot have this differential.

The elements zp
k

n+j+s+2 below are in degrees that correspond to the degrees of the
remaining even degree generators in the homology version. We have to show,
using only their degrees, that there is no differential dr(wn+j+i+1) = vrzp

k

n+j+s+2

with 0 ≤ i < n, 0 ≤ s, 0 ≤ k < n, 0 ≤ j, and r′(j − 1) < r ≤ r′(j). We don’t have
to worry about the w with i = n because it was created by dr

′(j). (This is a degree
reason.)

We will assume that j > 0. Our proof works for j = 0 but there are parts that
become degenerate and even easier.

We replace |wn+j+i+1| with |yj+i+1|+ 1 + 2r(j + i+ 1)(pn − 1). so we have

|yj+i+1|+ 1 + 2r(j + i+ 1)(pn − 1) + 1 + 2r(pn − 1) = |zp
k

n+j+s+2|
Turning this into numbers and rearranging,

2(pn − 1)
(
r(j + i+ 1) + r)

)
= |zp

k

n+j+s+2| − |yj+i+1| − 2

= pk2(pn+j+s+2 + 1)− 2pj+i+1 − 2 = 2(pn+j+s+k+2 + pk)− 2pj+i+1 − 2

It is r we are interested in, so rewrite

(7.4) 2r(pn − 1) = 2pn+j+s+k+2 + 2pk − 2pj+i+1 − 2− 2r(j + i+ 1)(pn − 1)

For starters, we want to show that if s = i− k, we have r′(j) < r. This eliminates
all pk′ powers where k′ > k as well. Also, when k = 0, it eliminates s = i, and
consequently, all s > i and all k, for s ≥ i.
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We prefer to work with r(−), so replace r′(j) = pj+1−r(j) and s = i−k in equation
(7.4). We want(

pj+1 − r(j)
)
2(pn − 1) < 2pn+j+i+2 + 2pk − 2pj+i+1 − 2− 2r(j + i+ 1)(pn − 1)

rearrange

pj+12(pn − 1)+ 2r(j+ i+1)(pn − 1)+ 2pj+i+1 +2 < 2pn+j+i+2 +2pk +2r(j)(pn − 1))

We can use r(j + i+ 1) ≤ pj+i+1 to show

pj+12(pn − 1) + 2pj+i+1(pn − 1) + 2pj+i+1 + 2 < 2pn+j+i+2 + 2pk + r(j)2(pn − 1))

expand and rearrange

2pn+j+i+1 + 2pn+j+1 + 2 < 2pn+j+i+2 + 2pk + r(j)2(pn − 1)) + 2pj+1

This is pretty clearly always true, so we are done with this.

We move to the case with s = i − k, but now, instead of taking the pk power of
the z, we just do pk−1. We show that this differential cannot exist because of the
Divisibility Criteria, not because it is too short. We show that the differential would
be too short if we use pk−2, i.e. that r ≤ r′(j − 1). If we do that, then all the lower
powers work as well. In particular, the s < i− k will also work.

Using equation (7.4) but with pk−1 instead of pk,

2r(pn − 1) = 2pn+j+i+1 + 2pk−1 − 2pj+i+1 − 2− 2r(j + i+ 1)(pn − 1)

= 2(pn − 1)
(
pj+i+1 − r(j + i+ 1)

)
+ 2pk−1 − 2

We should be able to solve for r, but we can’t unless k = 1, but this was already
solved back with Lemma 7.2. With 0 < k − 1 < n − 1, this can never be divisible
by 2(pn − 1). So, we can eliminate the s = i− k and pk−1 case. All we did here was
show this couldn’t exist. We didn’t show that it was too short if it did exist. So,
this doesn’t solve the problem for pk′ powers with k′ < k − 1.

If we move on to the pk−2 case, we can show it is too short. That will imply all
the lower powers as well. For this we go back to equation (7.4) but now with pk−2

instead of pk.

2r(pn − 1) = 2pn+j+i + 2pk−2 − 2pj+i+1 − 2− 2r(j + i+ 1)(pn − 1)

= 2pk−2 − 2− 2r(j + i+ 1)(pn − 1)

We want this to be less than 2r′(j − 1)(pn − 1), or

2pk−2 − 2− 2r(j + i+ 1)(pn − 1) ≤ 2r′(j − 1)(pn − 1)
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rearrange
2pk−2 ≤ 2r′(j − 1)(pn − 1) + 2 + 2r(j + i+ 1)(pn − 1)

Recall that n > k, so if r(j + i+ 1) > 0, this is true.

This concludes all of the cases we needed to check. There are no more differentials
than those already produced.

Of course if there are no more differentials for the ASS for k(n)∗(K2), then The
Pairing says there are no more for k(n)∗(K2). □

8. THE DUAL OF EVERYTHING

We have already given H∗K2 in equation (6.2). We need the Qn homology of H∗K2,
but it is just dual to equation (4.1). It gives us the E2 term of the ASS for k(n)∗(K2),
so we’ll skip writing it down.

We give the E2 term of the ASS for k(n)∗(K2), describe all the differentials, and
give the final result as a k(n)∗-module. The proofs are dual to the proofs for
k(n)∗(K2) and are actually, of necessity, carried out simultaneously with those.

Theorem 8.1. We have elements v ∈ G
2(pn−1),1
2 , y∗j ∈ G2pj ,0

2 , w∗
n+i ∈ G2pn+i+1,0

2 , and
z∗j ∈ G

2(pj+1),0
2 . The E2 term of the odd primary Adams spectral sequence for k(n)∗(K2)

is
P [v] ⊗

0<i<n
Γpi [z

∗
n−i]⊗ Γ[y∗1]⊗ E[w∗

n+1/2] ⊗
0<i≤n

E[w∗
n+i] ⊗

0<s
Γpn [z

∗
n+s]

plus a computable family of filtration-0 Z2’s annihilated by v coming from the E[Qn]-free
part of H∗K2.

Theorem 8.2. In the odd primary Adams spectral sequence for k(n)∗(K2), the differen-
tials are:

For 0 < j, dr(j)(w
∗
n+j) = vr(j)y∗j dr′(j−1)(z

∗
n+j) = vr

′(j−1)w∗
n+j−1+1/2

Ignoring the permanent v-free terms and the previously created v-torsion

Er′(j−1)+1 = P [v]⊗ Γ[y∗j ] ⊗
0≤i≤n

E[w∗
n+j+i] ⊗

0≤s
Γpn [z

∗
n+j+s+1]
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Er(j)+1 = P [v]⊗ Γ[y∗j+1]⊗ E[w∗
n+j+1/2] ⊗

0<i≤n
E[w∗

n+j+i] ⊗
0≤s

Γpn [z
∗
n+j+s+1]

Theorem 8.3. The odd primary k(n)∗(K2), as a k(n)∗-module, is the sum of the follow-
ing:

P [v] ⊗
0<i<n

Γpi [z
∗
n−i]⊕

0<j

TPr(j)[v]⊗ Γ[y∗j+1]⊗ TP p[y
∗
j ] ⊗

0<i≤n
E[w∗

n+j+i] ⊗
0≤s

Γpn [z
∗
n+j+s+1]

⊕
0≤j

TPr′(j)[v]⊗Γ[y∗j+1]⊗E[w∗
n+j+1/2] ⊗

0<i≤n
E[w∗

n+j+i]⊗Γpn−1[z
∗
n+j+1] ⊗

0<s
Γpn [zn+j+s+1]

plus a computable family of Zp’s annihilated by v coming from the E[Qn]-free part of
H∗K2.

9. MODIFICATIONS FOR p = 2

All we do in this section is to lay out the results for k(n)∗(K2) for p = 2. We skip
the homology version and proofs. We do this with a twinge of guilt. The very first
case done was the p = 2, n = 1 case, and there, the generally useful Divisibility
Criteria is worthless. Consequently, there are lots of little ad hoc arguments that
must be done in that case.

For p = 2, H∗K2 = P [ι2] ⊗i≥0 P [ui], with ui = Qiι2. We let u2
i = zi+1 = Qi+1Q0ι2

(z0 = 0). In an attempt to be as similar as possible with notation, we have |ui| =
2×2i+1 and |zi| = 2(2i+1), i > 0. We have |Qn| = 2×2n−1. We also have y0 = ι2
and yj = ι2

j

2 in degree 2× 2j .

Qny0 = un

Qnui = (un−i−1)
2i+1

= (zn−i)
2i 0 ≤ i < n

Qnun = 0

Qnui = (ui−n−1)
2n+1

= (zi−n)
2n 0 < n < i

The old formulas used for odd primes mostly work here

wn+i = un+i + un−i(zi)
2n−2n−i

0 ≤ i ≤ n wn+j+1/2 = yjwn+j

wn+(n+1) = u2n+1 + y0wnz
2n−1
n+1 wn+j+(n+1) = yjwn+jz

2n−1
n+j+1 j > 0
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In the ASS for odd primes, we had d1(y0) = vwn so that both y0 and wn were part
of the E[Qn]-free part of E2. In the p = 2 case we have d1(y0wn) = vw2

n = vzn+1

so zn+1, and all its powers, are also in the E[Qn]-free part. In general, we have
d1(y0w

k
n) = vwk+1

n . Because we would normally have wn+(n+1) = y0wnz
2n−1
n+1 =

y0w
2n+1−1
n , giving d1(wn+(n+1)) = vz2

n

n+1, we would not have w2n+1. Making the
adjustment above allows us to keep a new version of w2n+1 with d1(w2n+1) =
Qn(w2n+1) = 0.

Rewriting H∗K2 at p = 2(
E[y0]⊗ P [wn]

)
⊗

(
E[ui] ⊗

0≤i<n
P [(zn−i)

2i ]
)
⊗
(
E[un+(n+1)+i] ⊗

0<i
P [(zn+1+i)

2n ]
)

⊗
0<i<n

TP2i [zn−i]⊗ P [y1] ⊗
0≤i≤n

TP2n+1 [wn+i+1] ⊗
0<s

TP2n [zn+(n+1)+s+1]

The Qn homology is

⊗
0<i<n

TP2i [zn−i]⊗ P [y1] ⊗
0≤i≤n

TP2n+1 [wn+i+1] ⊗
0<s

TP2n [zn+(n+1)+s+1]

Theorem 9.1. We have elements v ∈ G2
−2(2n−1),1, y1 ∈ G2

4,0, wn+i ∈ G2
2n+i+1+1,0, and

zj ∈ G2
2j+1+2,0. The E2 term of the p = 2 Adams spectral sequence for k(n)∗(K2) is

P [v] ⊗
0<i<n

TP2i [zn−i]⊗ P [y1] ⊗
0≤i≤n

TP2n+1 [wn+i+1] ⊗
0<s

TP2n [zn+(n+1)+s+1]

plus a computable family of filtration-0 Z2’s annihilated by v coming from the E[Qn]-free
part of H∗K2.

For convenience we reset zn+i+1 = w2
n+i for 0 < i ≤ n+ 1.

Proposition 9.2. In the p = 2 Adams spectral sequence for k(n)∗(K2), the differentials
are:

For 0 < j ≤ n+ 1, r(j) = 2j = r′(j). Although wn+j+1/2 = yjwn+j , for j ≤ n+ 1, this
is not a generator.

d2
j

(yj) = v2
j

wn+j and d2
j

(yjwn+j) = v2
j

w2
n+j = v2

j

zn+j+1

For j > n+ 1 dr(j)(yj) = vr(j)wn+j dr
′(j)(wn+j+1/2) = vr

′(j)zn+j+1

and, ignoring the permanent free terms and the previously created v-torsion
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For 0 < j ≤ n+ 1, r(j) = 2j = r′(j)

E2j+1 = P [v, yj+1] ⊗
j≤i≤n

TP2n+1 [wn+i+1] ⊗
0≤i<j

E[w2n+2+i] ⊗
0<s

TP2n [z2n+2+s]

For n+ 2 < j,

Er′(j−1)+1 = P [v, yj] ⊗
0≤i≤n

E[wn+j+i] ⊗
0≤s

TP2n [zn+j+s+1]

For n+ 1 < j,

Er(j)+1 = P [v, yj+1]⊗ E[wn+j+1/2] ⊗
0<i≤n

E[wn+j+i] ⊗
0≤s

TP2n [zn+j+s+1]

We could rewrite TP2n+1 [wn+i+1] as E[wn+i+1] ⊗ TP2n [zn+i+2] for 0 ≤ i ≤ n. If we
did that, we could write proposition 9.2 without the exceptional cases. Since our
interest is in the k(n)∗-module structure and not so much in the multiplicative
structure, we do this for our final result.

Theorem 9.3. The 2-primary k(n)∗(K2) as a k(n)∗-module is the sum of the following:

P [v] ⊗
0<i<n

TP2n−i [zi+1]

⊕0<jTPr(j)[v]⊗ P [yj+1]⊗ E[wn+j] ⊗
0<i≤n

E[wn+j+i] ⊗
0≤s

TP2n [zn+j+s+1]

⊕0<jTPr′(j)[v]⊗ P [yj+1] ⊗
0<i≤n

E[wn+j+i]⊗ TP 2n [zn+j+1] ⊗
0<s

TP2n [zn+j+s+1]

plus a computable family of Z2’s annihilated by v coming from the E[Qn]-free part of
H∗K2.
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