Periodic solutions for a class of nonautonomous Hamiltonian systems

Yiming Long *,1,2, Xiangjin Xu 3

Nankai Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China

Received 9 March 1998; accepted 9 May 1998

Keywords: Non-autonomous Hamiltonian systems; Periodic solutions; Saddle point theorem; Monotone truncation function

1. Introduction

In this paper, we study the existence of periodic solutions for a Hamiltonian system

\[-Jz - B(t)z = \nabla H(t, z), \quad z \in \mathbb{R}^{2N}, \quad t \in \mathbb{R},\]

(1)

where \(B(t)\) is a given \(T\)-periodic and symmetric \(2N \times 2N\)-matrix function of \(C^1\) class in \(t\), \(H \in C^1(\mathbb{R} \times \mathbb{R}^{2N}, \mathbb{R})\) is \(T\)-periodic in \(t\), \(\nabla H := \nabla_z H \in C(\mathbb{R} \times \mathbb{R}^{2N}, \mathbb{R}^{2N})\) and

\[J = \begin{pmatrix} 0 & -I_N \\ I_N & 0 \end{pmatrix}\]

is the standard symplectic matrix. The main results of this paper are the following:

Theorem 1.1. For \(T > 0\), suppose that \(H\) satisfies the following conditions:

(H1) \(H \in C^1(S_T \times \mathbb{R}^{2N}, \mathbb{R}), \quad S_T = \mathbb{R}/(T\mathbb{Z}).\)
(H2) There are constants $\mu > 2$ and $r > 0$ such that
\[0 < \mu H(t, z) - z \nabla H(t, z), \quad \forall |z| \geq r. \]

(H3) $H(t, z) = o(|z|^2)$, uniformly in t as $z \to 0$.

(H4) There exists a constant \tilde{a} such that
\[\lim_{|z| \to \infty} \frac{H_t(t, z)}{H(t, z)} \geq \tilde{a} > -\frac{2}{T}, \quad \text{uniformly in } t. \]

Then Eq. (1) has a nontrivial T-periodic solution in each of the following two cases:

(i) The boundary value problem
\[-J \dot{z} = B(t)z, \quad z(0) = z(T), \quad (2) \]
has only the trivial solution.

(ii) There is a constant $\rho > 0$ such that $H(t, z) > 0$ (or $H(t, z) < 0$) for all z satisfying $0 < |z| < \rho$.

Theorem 1.2. Suppose that H satisfies (H1)–(H3) and the following (H5).
There are constants $c, d > 0$, such that $|\nabla H(t, z)| \leq c(\nabla H(t, z), z) + d$, $\forall z \in \mathbb{R}^{2N}$.
Then Eq. (1) has a nontrivial T-periodic solution in each of case (i) and (ii) in Theorem 1.1.

For the autonomous case, i.e. H is independent of t, in his pioneering work [9] Rabinowitz first proved the existence of at least one periodic solution for Eq. (1). Many works have been done on this problem. For example, in [1, 2, 4–6, 9–12] some existence results of Eq. (1) are proved. We refer to [1, 12] for further references. These results have further restrictions on $\nabla H(t, z)$ in addition to (H1)–(H3). In this paper, we prove the existence of periodic solutions for Eq. (1) under a different and new condition (H4), which measures the difference of Eq. (1) from the autonomous systems. Define $H(t, z) = f(t)e^{\mu|z|^2}$ for large $|z|$, with $\mu > 0$ and $f \in C^1(S_T, \mathbb{R})$ satisfying $f'(t)/f(t) > -2/T$ for all t. Such kinds of functions as above satisfy the conditions of our Theorem 1.1, but are not contained in the above mentioned papers. Our Theorem 1.2 generalizes Theorem 2.1 of [2], where [2] requires $|\nabla H(t, z)|^p \leq c\nabla H(t, z)z + d$, for all $z \in \mathbb{R}^{2N}$, where $p > 1$. One may also compare our theorems with Theorem 1.4 of [10].

2. Proofs of main results

In this section, we consider the Hamiltonian system

\[-J \dot{z} = B(t)z = \nabla H(t, z), \quad z \in \mathbb{R}^{2N}, \quad t \in \mathbb{R} \]

with $B(t)$ being a given continuous T-periodic and symmetric matrix function and H being T-periodic in t. Let $X := W^{1/2, 2}(S_T, \mathbb{R}^{2N})$ be the Sobolev space of T-periodic
\[R^{2N} \]-valued functions with inner product \((\cdot, \cdot)_X\) and norm \(\| \cdot \|_X\). Define two self-adjoint operators \(A, B \in \mathcal{L}(X)\) by extending the bilinear forms

\[
(Ax, y) = \int_0^T (Jx, y) \, dt, \quad (Bx, y) = \int_0^T (B(t)x, y) \, dt, \quad \forall x, y \in X.
\]

By [7] and standard spectral theory, \(B\) is compact on \(X\). Denote the eigenvalues of \(A - B\) on \(X\) by

\[
\cdots \leq \lambda_{-2} \leq \lambda_{-1} < 0(= \lambda_0) < \lambda_1 \leq \lambda_2 \leq \cdots,
\]

where when \(\dim \ker(A - B) = 0\), \(\lambda_0 \notin \sigma(A - B)\). Let \(\{e_{\pm j}\}\) be the eigenvectors of \(A - B\) corresponding to \(\{\lambda_{\pm j}\}\), respectively. Define \(X_+ = \text{span}\{e_1, e_2, \ldots\}\), \(X_- = \text{span}\{e_{-1}, e_{-2}, \ldots\}\), \(X_0 = \ker(A - B)\). Hence there exists a decomposition \(X = X_+ \oplus X_0 \oplus X_-\) with \(\dim X_0 < \infty\), \(\dim X_+ = \dim X_- = \infty\) and an equivalent inner product in \(X\), denoted by \((\cdot, \cdot)\), for \(u = u^+ + u^0 + u^-\) and \(v = v^+ + v^0 + v^- \in X = X_+ \oplus X_0 \oplus X_-\), define

\[
(u, v) = ((A - B)u^+, v^+)_X - ((A - B)u^-, v^-)_X + (u^0, v^0)_X.
\]

Hence, we have

\[
\int_0^T (J\dot{u} - B(t)u) \, dt = ((A - B)u, u)_X = \|u^+\|^2 - \|u^-\|^2.
\]

Note that \(\dim X_0 > 0\) if and only if the boundary value problem

\[
-J\ddot{z} = B(t)z, \quad z(0) = z(T)
\]

has at least a nontrivial solution.

Set \(\alpha_0 = \min_{|z| = r_0, t \in S_T} |H(t, z)|, \beta_0 = \max_{|z| \leq r_0, t \in S_T} |H(t, z)|\). Conditions (H1) and (H2) imply that for some \(\beta_1 \geq 0\)

\[
\alpha_0 |z|^\mu \leq H(t, z), \quad \forall |z| \geq r_0,
\]

\[
\alpha_0 |z|^\mu \leq H(t, z) + \beta_0 \leq \frac{1}{\mu} \langle \nabla H(t, z)z + \beta_3 \rangle, \quad \forall z \in \mathbb{R}^{2N}.
\]

Modifying [5] (cf. appendix of [5]), choose \(\sigma \in (0, 1)\), such that \(\mu \sigma > 2\), we truncate \(H\) as in the following proposition:

Proposition 2.1. Assume conditions (H1) and (H2), then there exist two sequences \(\{K_n\}\) and \(\{K'_n\}\) in \(\mathbb{R}\) and a sequence of functions \(\{H_n\}\) such that

(i) \(0 < K_0 < K_n < K_{n+1}, \forall n \in \mathbb{N}\), and \(K_n \to \infty\), as \(n \to \infty\), where \(K_0 = \max\{1, r, \beta_0/\alpha_0(1 - \sigma)\}\); and \(K_n < K'_n, \forall n \in \mathbb{N}\).

(ii) \(H_n(t, \cdot) \in C(S_T \times \mathbb{R}^{2N}, \mathbb{R})\) and for any given \(t \in S_T\), \(H_n(t, \cdot) \in C^1(\mathbb{R}^{2N}, \mathbb{R})\), for every \(n \in \mathbb{N}\).

(iii) \(H_n(t, z) = H(t, z), \forall |z| \leq K_n, \forall n \in \mathbb{N}\); and \(H_n(t, z) = (\tau_n + 1)z|z|^\mu, \forall |z| \geq K'_n, \forall n \in \mathbb{N}\).
(iv) $H_n(t,z) \leq H_{n+1}(t,z) \leq H(t,z)$, $\forall (t,z) \in S_T \times \mathbb{R}^{2N}$.
(v) $0 < \mu \sigma H_n(t,z) \leq \nabla H_n(t,z) \cdot \frac{\partial}{\partial z}$, $\forall |z| \geq r_0$, for every $n \in \mathbb{N}$.

Note that in [5] the truncating functions are constructed for autonomous Hamiltonian functions. But the proof also works for time-dependent $H(t,z)$.

Now integrating (v) yields

$$H_n(t,z) \geq a|z|^p - b, \quad \forall z \in \mathbb{R}^{2N},$$

for some n-independent constants a and b. Let $\Psi_n(u) = \int_0^T H_n(t,u) \, dt$. Define a functional $I_n : X \to \mathbb{R}$ by

$$I_n(u) = \frac{1}{2} \int_0^T (-Ju' - B(t)u)u \, dt - \int_0^T H_n(t,u) \, dt$$

$$= \frac{1}{2} \left(\|u^+\|^2 - \|u^-\|^2 \right) - \Psi_n(u).$$

It is well known that $I_n \in C^1(X, \mathbb{R})$, and

$$\langle I'_n(u), v \rangle = \int_0^T (-Ju' - B(t)u)v \, dt - \int_0^T \nabla H_n(t,u)v \, dt$$

$$= \langle u^+ - u^-, v \rangle - \langle \Psi'_n(u), v \rangle$$

and Ψ'_n is compact as in [12]. So finding T-periodic solutions of Eq. (1) with H replaced by H_n is equivalent to finding critical points of I_n in X.

We will use Theorem 1.3 of [2] to prove that I_n has a critical point u_n which is different from 0. Similarly to the proof of [2], it is easy to show that the functional I_n satisfies (I2), (I3) and (I4) in Theorem 1.3 of [2] without using (H4) or (H5). Different from [2], we also prove (I1) without using (H4) or (H5) as the following.

Lemma 2.1. I_n satisfies (PS)*.

Proof. Suppose $\{u_k\}$ is a sequence in X such that

$$u_k \in X, \quad I_n(u_k) \leq C < \infty \quad \text{and} \quad P_k I'_n(u_k) \to 0 \quad \text{as} \quad k \to \infty.$$

Then for large n and $v = u_k$,

$$C + \|u_k\|_{X} \geq I_n(u_k) - \frac{1}{2} \langle P_k I'_n(u_k), u_k \rangle$$

$$= \int_0^T \left(\frac{1}{2} \nabla H_n(t,u_k)u_k - H_n(t,u_k) \right) \, dt$$

$$\geq \left(\frac{1}{2} - \frac{1}{\mu \sigma} \right) \int_0^T \nabla H_n(t,u_k)u_k \, dt - c_1$$
\[
\geq \left(\frac{\mu \sigma}{2} - 1 \right) \int_0^T H_n(t, u_k) \, dt - c_2
\]
\[
\geq c_3 \| u_k \|_{L^{\mu \sigma}}^{\mu \sigma} - c_4
\]
via (H2) and the growth of \(H_n \) at infinity. Writing
\[
u_k = u_k^+ + u_k^- + u_0 \in X_+ \oplus X_- \oplus X_0.
\]
Because \(X_0 \) is a finite-dimensional space, it follows from Eq. (3) that
\[
\| u_0 \|_X \leq c_5 (1 + \| u_k \|_X^{1/\mu \sigma})^2
\]
Taking \(v = u_k^+ \) in the inequality \(|\langle P_k I'_k(u_k), v \rangle| \leq \| v \| \) (which holds for large \(n \)), we have
\[
\| u_k^+ \|_X^2 - \left| \int_0^T \nabla H_n(t, u_k) u_k^+ \, dt \right| \leq \| u_k \|_X^2
\]
Using the Hölder inequality and \(\| u \|_{L^{\mu \sigma}} \leq C_{\mu \sigma} \| u \|_X \), by Eq. (3) we have
\[
\| u_k^+ \|_X^2 \leq \left\{ \int_0^T |\nabla H_n(t, u_k)|^{\mu \sigma/(\mu \sigma - 1)} \, dt \right\}^{(\mu \sigma - 1)/\mu \sigma} \| u_k^+ \|_{L^{\mu \sigma}}^\mu + \| u_k^+ \|_X^\mu
\]
\[
= \left\{ \int_{|u| \leq \kappa_{n+1}} + \int_{|u| > \kappa_{n+1}} \left| \nabla H_n(t, u_k) \right|^{\mu \sigma/(\mu \sigma - 1)} \, dt \right\}^{(\mu \sigma - 1)/\mu \sigma}
\]
\[
\times \| u_k^- \|_{L^{\mu \sigma}}^\mu + \| u_k^- \|_X^\mu
\]
\[
\leq \{ C_0(n) + (\mu \sigma R)^{\mu \sigma/(\mu \sigma - 1)} \} \| u_k \|_{L^{\mu \sigma}}^{(\mu \sigma - 1)/\mu \sigma} \| u_k^+ \|_{L^{\mu \sigma}}^\mu + \| u_k^+ \|_X^\mu
\]
\[
\leq C_4(n) (1 + \| u_k \|_{L^{\mu \sigma}}^{(\mu \sigma - 1)/\mu \sigma}) \| u_k^+ \|_X,
\]
i.e.,
\[
\| u_k^+ \|_X \leq C_4(n) (1 + \| u_k \|_{L^{\mu \sigma}}^{(\mu \sigma - 1)/\mu \sigma}) \leq C_2(n) (1 + \| u_k \|_X^{(\mu \sigma - 1)/\mu \sigma}),
\]
where \(C_i(n) \)’s are constants depending on \(n \). Similarly, for \(v = u_k^- \) we have
\[
\| u_k^- \|_X \leq C_3(n) (1 + \| u_k \|_X^{(\mu \sigma - 1)/\mu \sigma}),
\]
Hence,
\[
\| u_k \|_X \leq C_4(n) (1 + \| u_k \|_X^{(\mu \sigma - 1)/\mu \sigma})
\]
i.e., \(\{ u_k \} \) is bounded on \(X \). Since
\[
\| u_k^+ - u_k^- \|_{L^{\mu \sigma}} = P_k \Psi'_k(u_k) = P_k I'_k(u_k) \to 0 \quad \text{as} \quad k \to \infty,
\]
\(Y. \text{ Long, X. Xu / Nonlinear Analysis 41 (2000) 455–463}\)

\(\Psi_0\) is a compact operator, and \(\{u^0_k\} \subset X^0\) is bounded, \(\{u_k\}\) has a convergence subsequence, i.e., \((PS)^*\) holds.

Proof of Theorem 1.1. By our above discussions, \(I_n\) satisfies the hypotheses of Theorem 1.3 of [2]. So \(I_n\) possesses a nontrivial critical point \(u_n\). We shall prove \(\|u_n\|_C \leq K_n\) for large \(n\).

We first prove that there is a constant \(M > 0\) such that \(I_n(u_n) \leq M\), for every \(n \in \mathbb{N}\). If every one of \(\{u_n\}\) is gained in the first case in the proof of Theorem 1.3 of [2] (p. 228), \(I_n(u_n) < 0\) holds for every \(n \in \mathbb{N}\). Otherwise, there exists an \(n_0\) such that \(u_{n_0}\) is gained in the second case. Note that \(I_n \leq I_{n_0}\) for \(n > n_0\) (since \(H_n \geq H_{n_0}\) for \(n > n_0\)), we replace \(I_{n_0}\) by \(I_n\) only in the proof of the Theorem 1.3 of [2] (pp. 228–230), and use the same \(\Phi, \Gamma, \Phi', \mathcal{H}, m, q\) as gained for \(I_{n_0}\) and \(B^m_1\) for \(I_n\). Then we can gain a critical point \(u_n\) of \(I_n\) such that \(\|u_n\|_C \leq K_n\) for large \(n\).

Now we show that \(\|u_n\|_C \leq K_n\) for large \(n\). Since \(I_n(u_n) = 0\), similarly to Eq. (3) we have

\[
\int_0^T \nabla H_n(t, u_n) u_n \, dt \leq M_1, \quad \int_0^T H_n(t, u_n) \, dt \leq M_2
\]

for some constants \(M_1\) and \(M_2\) independent of \(n\).

Denote by \(\tilde{H}_n(t, z) = \frac{1}{2} \langle B(t) z, z \rangle + H_n(t, z)\). Then (H1), (H2) and (H4) also hold for \(\tilde{H}_n\) with some \(\tilde{\mu}, \tilde{r}\) independent of \(n\) and the same \(\tilde{a}\). Thus we can omit \(\langle B(t) z, z \rangle\) in the following proof.

Denote

\[A_n = \{t \in S_T \mid |u_n(t)| < K_n\}.\]

By Eq. (4) we have

\[M_2 \geq \int_0^T H_n(t, u_n) \, dt \geq \bar{c}_0 \|u_n\|_{L^m}^m + b\]

for some \(n\)-independent constant \(b\). Thus we know for large \(n\), \(A_n \neq \emptyset\) and \(\text{measure}(A_n) > T/2\). Since \(u_n \in C^1\), \(A_n\) is open. Let \(A_n = \bigcup_{l=1}^\infty (a_n, b_n, j)\). It suffices to prove \(A_n = S_T\).

We prove this indirectly by assuming that this claim fails in a subsequence of \(\{A_n\}\). Without loss generality, we still denote this subsequence by \(\{A_n\}\). By Eq. (4), \(H_n(t, u_n)\) is \(H(t, u_n)\) and \(K_n > r\), we have

\[M_2 \geq \int_0^T H_n(t, u_n) \, dt \geq \int_{A_n} H_n(t, u_n) \, dt = \sum_{j=1}^\infty \int_{a_n, j}^{b_n, j} H(t, u_n) \, dt.
\]

For every \((a_{n, j}, b_{n, j})\), let

\[B^n_j = \{t \in (a_{n, j}, b_{n, j}) \mid H(t, u_n(t)) < H(a_{n, j}, u_n(a_{n, j}))\} = \bigcup_{l=1}^\infty (c^n_{l, j}, d^n_{l, j}).\]
We have $H(a_{n,j}, u_n(a_{n,j})) = H(c_{l}^{j}, u_n(c_{l}^{j})) = H(d_{l}^{j}, u_n(d_{l}^{j}))$, $\forall l \in \mathbb{N}$. Thus,

$$
\int_{a_{n,j}}^{b_{n,j}} H(t, u_n) \, dt
\geq (b_{n,j} - a_{n,j}) H(a_{n,j}, u_n(a_{n,j})) + \int_{B_{r}^{n}} [H(t, u_n(t)) - H(a_{n,j}, u_n(a_{n,j}))] \, dt
$$

$$
= (b_{n,j} - a_{n,j}) H(a_{n,j}, u_n(a_{n,j})) + \sum_{j=1}^{\infty} \int_{c_{l}^{j}}^{d_{l}^{j}} \int_{c_{l}^{j}}^{d_{l}^{j}} H(s, u_n(s)) \, ds \, dt,
$$

the last equality holds since $\dot{u}_n = J \nabla H(t, u_n)$. By (H4) there exists $N > r$ independent of n such that

$$
\frac{H(t, z)}{H(t, z)} > -\frac{1}{T} + \frac{\tilde{a}}{2}, \quad \forall |z| > N.
$$

When $|u_n(s)| \geq N$ and $H_s(s, u_n(s)) < 0$ for $s \in B_{r}^{n}$, we have

$$
\frac{H_s(s, u_n(s))}{H(a_{n,j}, u_n(a_{n,j}))} \leq \frac{H_s(s, u_n(s))}{H(s, u_n(s))} \leq -\frac{1}{T} + \frac{\tilde{a}}{2}.
$$

Let $\beta = \min_{s \in S, |z| \leq N} \{H_s(s, z), 0\}$, then β is finite and independent of n. Hence we have

$$
\int_{a_{n,j}}^{b_{n,j}} H(t, u_n) \, dt \geq H(a_{n,j}, u_n(a_{n,j})) \left\{ (b_{n,j} - a_{n,j}) + \int_{Q_1}^{Q_2} \int_{Q_2}^{Q_3} H(s, u_n(s)) \, ds \, dt \right\}
$$

$$
+ \left(\int_{Q_1}^{Q_2} + \int_{Q_2}^{Q_3} \right) H_s(s, u_n(s)) \, ds \, dt,
$$

where

$$
Q_1 = \{ s \in B_{r}^{n} \mid |u_n(s)| > N, H_s(s, u_n(s)) < 0 \},
$$

$$
Q_2 = \{ s \in B_{r}^{n} \mid |u_n(s)| > N, H_s(s, u_n(s)) \geq 0 \},
$$

$$
Q_3 = \{ s \in B_{r}^{n} \mid |u_n(s)| \leq N \}.
$$

Then we have

$$
\int_{a_{n,j}}^{b_{n,j}} H(t, u_n) \, dt
\geq H(a_{n,j}, u_n(a_{n,j})) \left[(b_{n,j} - a_{n,j}) - \sum_{j=1}^{\infty} \int_{c_{l}^{j}}^{d_{l}^{j}} \int_{c_{l}^{j}}^{d_{l}^{j}} \left(-\frac{1}{T} + \frac{\tilde{a}}{2} \right) \, ds \, dt \right] + \sum_{j=1}^{\infty} \int_{c_{l}^{j}}^{d_{l}^{j}} \int_{c_{l}^{j}}^{d_{l}^{j}} \beta \, ds \, dt
$$

$$
\geq \left[(b_{n,j} - a_{n,j}) - \frac{1}{4} (b_{n,j} - a_{n,j}) \right] \left(\frac{2}{T} - \tilde{a} \right) H(a_{n,j}, u_n(a_{n,j})) + \frac{(b_{n,j} - a_{n,j})^2 \beta}{2}.
$$
\[
\geq \left[(b_{n,j} - a_{n,j}) - \frac{1}{4} (b_{n,j} - a_{n,j})^2 \left(\frac{2}{T} - \tilde{a} \right) \right] (\alpha_0 |u_n(a_{n,j})|^\mu - b) + \frac{(b_{n,j} - a_{n,j})^2 \beta}{2} \\
\geq (b_{n,j} - a_{n,j}) \left[\frac{2 + T\tilde{a}}{4} (\alpha_0 K_n^\mu - b) + \frac{T\beta}{2} \right].
\]

Thus, we have
\[
M_2 \geq \sum_{j=1}^{\infty} \int_{a_{n,j}}^{b_{n,j}} H(t, u_n) \, dt \geq \sum_{j=1}^{\infty} (b_{n,j} - a_{n,j}) \left[\frac{2 + T\tilde{a}}{4} (\alpha_0 K_n^\mu - b) + \frac{T\beta}{2} \right] \\
\geq \frac{T}{2} \left[\frac{2 + T\tilde{a}}{4} (\alpha_0 K_n^\mu - b) + \frac{T\beta}{2} \right].
\]

Since \(\mu > 2\), \(2/T + \tilde{a} > 0\) and \(K_n \to \infty\) as \(n \to \infty\), we have a contradiction. Hence \(\|u_n\|_C \leq K_n\) for large \(n\). Since \(H_n(t, u_n) = H(t, u_n)\) for \(\|u_n\|_C \leq K_n\), we have that \(u_n\) is a nontrivial solution of Eq. (1) for large \(n\). Hence Theorem 1.1 is proved. \(\Box\)

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we have Eq. (4) and \(A_n = \bigcup_{j=1}^{\infty} (a_{n,j}, b_{n,j})\) for large \(n\). By passing a subsequence, assume \(A_n \neq S_T\), for \(n \in \mathbb{N}\). Otherwise, we have the conclusion. From Eq. (4) and (H5)
\[
M_1 \geq \int_0^T \nabla H_n(t, u_n) u_n \, dt \geq \int_{A_n} \nabla H(t, u_n) u_n \, dt \geq \frac{1}{c} \int_{A_n} (|\nabla H(t, u_n)| - d) \, dt.
\]

Thus, we have
\[
\sum_{j=1}^{\infty} \int_{a_{n,j}}^{b_{n,j}} |\dot{u}_n(t)| \, dt = \int_{A_n} |\nabla H(t, u_n)| \, dt \leq cM_1 + dT.
\]

For \(t \in (a_{n,j}, b_{n,j})\), we have
\[
|u_n(t)| - |u_n(a_{n,j})| \geq - \int_{a_{n,j}}^t |\dot{u}_n(s)| \, ds \geq -(cM_1 + dT),
\]
i.e., \(|u_n(t)| \geq K_n - (cM_1 + dT)\). By Eq. (4) we have
\[
M_2 \geq \int_0^T H_n(t, u_n) \, dt \geq \int_0^T (\alpha_0 |u_n|^\mu - b) \, dt
\]

\[\geq \int_0^T \left[z_0(K_n - cM_1 - dT)^{\mu T} - b \right] dt \]

\[= T \left[z_0(K_n - cM_1 - dT)^{\mu T} - b \right]. \]

Since \(z_0, b, c, d, \mu, M_1 \) are independent of \(n \) and \(K_n \to \infty \) as \(n \to \infty \), we have a contradiction. Hence \(A_n = S_T \) for large \(n \), i.e., \(\|u_n\|_C \leq K_n \). Since \(H_n(t, u_n) = H(t, u_n) \) for \(\|u_n\|_C \leq K_n \), we have that \(u_n \) is a nontrivial solution of Eq. (1) for large \(n \). Hence Theorem 1.2 is proved.

References