Eigenvectors II

E.g. Without calculation:

\[A = \begin{bmatrix} -2 & 1 \\ 0 & -1 \end{bmatrix} \]

We see \(\det (A - \lambda I) = \det \begin{bmatrix} -2 - \lambda & 1 \\ 0 & -1 - \lambda \end{bmatrix} \)

\[= (-2 - \lambda)(-1 - \lambda) \]

\[\Rightarrow \lambda_1 = -2, \lambda_2 = -1 \]

These are precisely the diagonal entries of \(A \).

Observation. If \(A \) is a 2x2 matrix where either or both of the off-diagonal entries is zero, then the diagonal entries are the eigenvalues.

E.g. Eigenvectors can be complex numbers.

\[A = \begin{bmatrix} \cos 30^\circ & -\sin 30^\circ \\ \sin 30^\circ & \cos 30^\circ \end{bmatrix} \]
Trace.

Let A be a square matrix. The trace of A, denoted by $\text{tr}(A)$, is the sum of all diagonal entries:

$$\text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}. $$

(Here assuming A is $n \times n$.)

Fact. $\text{tr}(A)$ is also the "sum" of its eigenvalues.

(not exactly)

e.g. Suppose $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

By definition, $\text{tr}(A) = a + d$.

Let's try to find its eigenvalues.

Computing $\det(A - \lambda I) = \det \begin{bmatrix} a-\lambda & b \\ c & d-\lambda \end{bmatrix}$

\[= (a-\lambda)(d-\lambda) - bc \]

\[= \lambda^2 - (a+d)\lambda + ad-bc. \]

Observation: $\lambda_1 + \lambda_2 = a+d = \text{tr}(A)$

$\lambda_1 \cdot \lambda_2 = ad-bc = \det(A)$.
Linear algebra

Linear independence

Def. Easy to define. For 2 vectors, let \vec{v}_1 and \vec{v}_2 ($\neq \vec{0}$) be two vectors (on the plane, in space, or even in higher dimensional spaces). They are said to be linearly independent if one is not a scalar multiple of the other. Conversely, if there is a number a such that $a \vec{v}_1 = a \vec{v}_2$, they are said to be linearly dependent.

Some properties:

1. If \vec{v}_1 and \vec{v}_2 are linearly dependent, \vec{v}_2 and \vec{v}_3 are linearly dependent, then \vec{v}_1 and \vec{v}_3 are linearly dependent.

Remark: The number a can be negative as well as positive.

It's not so easy to generalize this concept to more than 2 vectors.
Upshot: Let A be a 2×2 matrix with eigenvalues λ_1 and λ_2. Let \vec{v}_1 (resp., \vec{v}_2) be an eigenvector of λ_1 (resp., λ_2). If $\lambda_1 \neq \lambda_2$, then \vec{v}_1 and \vec{v}_2 are linearly independent.

Ex. On the plane, $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

From geometry we know any point on the plane is uniquely determined by its coordinates. Say the point $P = (2, 3)$, the vector \overrightarrow{OP} is $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$. By splitting the two components of the coordinates of P, the vector \overrightarrow{OP} can be written as

$$\overrightarrow{OP} = 2 \vec{v}_1 + 3 \vec{v}_2 \quad (\ast)$$

where 2 and 3 are precisely the coefficients of the point P. Clearly, this procedure (\ast) can be done
For any vector on the plane.

Alternatively, take \(\vec{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\vec{u}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)

They are linearly independent.

Question, can you express the vector \(\begin{bmatrix} 2 \\ 3 \end{bmatrix} \) as a combination of \(\vec{u}_1 \) and \(\vec{u}_2 \) (instead of \(\vec{v}_1 \) and \(\vec{v}_2 \))?

Let's start by assuming we can do it:

\[
\begin{bmatrix} 2 \\ 3 \end{bmatrix} = a \vec{u}_1 + b \vec{u}_2 \quad (**)
\]

It's enough to find the numbers \(a \) and \(b \) above.

Plugging in \(\vec{u}_1 \) and \(\vec{u}_2 \):

\[
\begin{bmatrix} 2 \\ 3 \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

\[
= \begin{bmatrix} a \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -b \end{bmatrix} = \begin{bmatrix} a \\ -b \end{bmatrix}
\]

\[
\Rightarrow \quad \begin{cases} 2 = -b \\ 3 = a \end{cases} \quad \Rightarrow \quad \begin{cases} a = 3 \\ b = -2 \end{cases} \quad \text{Done!}
\]
Think about it: this can also be done for any vector on the plane.

Given two vectors \(\vec{u}_1 \) and \(\vec{u}_2 \). For any numbers \(a \) and \(b \),
\[a \vec{u}_1 + b \vec{u}_2 \]
is called a linear combination of \(\vec{u}_1 \) and \(\vec{u}_2 \).

If \(\vec{u}_1 \) and \(\vec{u}_2 \) are linearly independent, then any vector on the plane can be written as a linearly combination of \(\vec{u}_1 \) and \(\vec{u}_2 \).

Question. How to generalize this statement to space?

An application. (Iteration of linear maps)

Suppose \(A \) is 2x2 with eigenvalues \(\lambda_1 \) and \(\lambda_2 \) and associated eigenvectors \(\vec{v}_1 \) and \(\vec{v}_2 \). Assume \(\vec{u}_1 \) and \(\vec{u}_2 \) are linearly independent.

Let \(\vec{x} \) be any vector. By definition, we can write \(\vec{x} \) as a linear combination of \(\vec{u}_1 \) and \(\vec{u}_2 \).
say \(\vec{x} = a \vec{u}_1 + b \vec{u}_2 \) for some \(a \) and \(b \).

This gives us an easy way of calculating results such as

\[
A^2 \vec{x} = A (A \vec{x}) , \quad A^3 \vec{x} = A (A (A \vec{x}))
\]

and so on.

E.g. \(A^2 \vec{x} = A (A \vec{x}) \)

\[
= A \left(A \left(a \vec{u}_1 + b \vec{u}_2 \right) \right)
\]

\[
= A \left(a A \vec{u}_1 + b A \vec{u}_2 \right)
\]

\[
= A \left(a \lambda_1 \vec{u}_1 + b \lambda_2 \vec{u}_2 \right)
\]

\[
= a \lambda_1 A \vec{u}_1 + b \lambda_2 A \vec{u}_2
\]

\[
= a \lambda_1^2 \vec{u}_1 + b \lambda_2^2 \vec{u}_2
\]

What about \(A^3 \vec{x} \), \(A^4 \vec{x} \), \ldots, \(A^n \vec{x} \)?

\[
A^3 \vec{x} = a \lambda_1^3 \vec{u}_1 + b \lambda_2^3 \vec{u}_2
\]

In general,

\[
A^n \vec{x} = a \lambda_1^n \vec{u}_1 + b \lambda_2^n \vec{u}_2.
\]