Discrete Random Variables & Discrete Distributions

A random variable is a function from the sample space \(\Omega \) to the set of real numbers \(\mathbb{R} \).

If the range of a random variable is discrete (as a subset of \(\mathbb{R} \)), then it is called a discrete random variable; otherwise it is a continuous random variable.

Remark: If the sample space \(\Omega \) is a finite set, then any random variable \(X : \Omega \rightarrow \mathbb{R} \) must be discrete. If \(\Omega \) is infinite, a random variable on \(\Omega \) may or may not be discrete.

Note: We will gradually extend our study from finite sample spaces to infinite ones.

Example: Toss a fair coin repeatedly. Let \(A \) be the event that the first time head appears. This sample space is infinite, since one can keep tossing the coin. And the event \(A \) also does contain
infinitely many results:

\[A = \{ \text{the first toss was a head} \cup (H) \]
\[\text{the first was a tail and the second was a head} \cup (TH) \]
\[TTH, TTH, \ldots \]

We can still construct a discrete random variable on \(\Omega \).

Define it to be \(Y: \Omega \rightarrow \mathbb{R} \). Which counts the total number of tosses until the first heads appears.

So \(Y(H) = 1 \), \(Y(TH) = 2 \), \(Y(TTH) = 3 \), \ldots

Probability vs. Random Variables

Suppose \(X: \Omega \rightarrow \mathbb{R} \) is a random variable. Using this \(X \) we can talk about some events and their probabilities given out of this random variable. For example,

for some number \(a \), let \(A \) be the event consisting of all elements in \(\Omega \) that are mapped to \(a \) by \(X \).

i.e. \[A = \{ e \in \Omega \mid X(e) = a \} \].

\[\Box \]
The probability \(P(A) \) is usually denoted by

\[P(X = a) \]

If we choose a different number \(b \), we will get another event \(\{X = b\} \) with a probability \(P(X = b) \).

So by varying this number we can define a function

for any real numbers, call it \(p \).

The \(p \) function is defined

\[p(x) = P(X = x) \]

called a probability mass function.

E.g. Toss a coin 3 times. So \(\Omega \) consists of 8 outcomes.

Let \(X : \Omega \rightarrow \mathbb{R} \) be the function counting the number of heads in each outcome, then \(X \) takes values among 0, 1, 2, 3. (so it is discrete). Then the \(p \) function will be defined as follows:

\[p(0) = \text{the probability of no heads} = P(\text{T T T T}) = \frac{1}{8} \]

\[p(1) = \text{the probability of having exactly 1 head and 2 tails} = \frac{3}{8} \]
And similarly, \(p(2) = \frac{3}{8} \), \(p(3) = \frac{1}{8} \).

What else? if \(x \) is any number other than 0, 1, 2, 3, \(p(x) \) is simply zero.

Notice that \(p(0) + p(1) + p(2) + p(3) = 1 \) and \(p(x) \geq 0 \) for any \(x \).

Example: Tossing a coin until the first heads appears.

Let \(X : \mathcal{S} \rightarrow \mathbb{R} \) be the function counting the number of tosses. Now let's calculate the probability mass function \(p \).

First of all, what are the possible values under the random variable \(X \)?

- \(X(H) = 1 \)
- \(X(TH) = 2 \)
- \(X(TTH) = 3 \)

So \(X \) can be any positive integer.
Then \[p(1) = P(X = 1) = P(\text{the first toss showed a head}) \]
\[= \frac{1}{2} \]
\[p(2) = P(X = 2) = P(\text{first head + second head}) \]
\[= \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \]
\[p(3) = P(X = 3) = P(\{TTH\}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8} \]
\[\vdots \]
\[p(1) + p(2) + p(3) + \ldots = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots = 1 \]

Another related function is the (cumulative) distribution function of a random variable \(X \):
\[F(x) = P(X \leq x) \]

Notice that since \(P \) is non-negative, \(F \) is a non-decreasing function.

In the previous example,
\[X \leq 1 : \text{the first toss was head} \]
\[X \leq 2 : H \text{ or TH} \]
\[X \leq 3 : H, \text{ or TH, or TTH} \]
Useful and important random variables and their distributions

1. The binomial distribution.

Example: Toss a coin 10 times.

Random variable: the number of tails

So the random variable X takes values from 0 to 10.

Calculate its probability mass function:

- If $X=0$, all are heads, $\Rightarrow p(0) = \left(\frac{1}{2}\right)^{10}$
- If $X=10$, all are tails, $\Rightarrow p(10) = \left(\frac{1}{2}\right)^{10}$
- If $X=1$, there is one tail and 9 heads, in which one is the tail? there are 10 positions that the tail can occur, so $p(1) = \binom{10}{1}\left(\frac{1}{2}\right)^{10}$
- If $X=2$, there are 2 tails, where are they? There are $\binom{10}{2}$ possible positions for the 2 tails to occur, $\Rightarrow p(2) = \binom{10}{2}\left(\frac{1}{2}\right)^{10}$
What if the coin is unfair: 0.3 — head
0.7 — tail

In this case

\[p(0) = P(\text{all heads}) = (0.3)^{10} \]

\[p(1) = P(1 \text{ tail}) = \binom{10}{1}(0.7)(0.3)^9 \]

Which one?

\[p(2) = P(2 \text{ tail}) = \binom{10}{2}(0.7)^2(0.3)^8 \]

Binomial distribution. All trials are independent. Each trial has 2 possible outcomes: successful and unsuccessful with the probability of success \(p \).

(So failure has probability \(1 - p \)).

If we experiment the trial \(n \) times. Let \(S_n \) be the random variable that counts the number of successes.

Then we can calculate

\[P(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k} \]

and \(S_n \) is said to be binomially distributed, with parameters \(n \) and \(p \). \(S_n \) is called a binomial random variable and its distribution is called the binomial distribution.
2. Geometric distribution

Experiment: toss a coin until the heads appear for the first time.

Random variable: the number of tosses to stop the experiment.

We saw that the probability mass function looks like:

\[p(1) = \frac{1}{2} \]
\[p(2) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \]
\[p(3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8} \]

What if the coin is unfair? head \(\uparrow\) tail \(\downarrow\) \(1-p\).

Then:

\[p(1) = p \]
\[p(2) = (1-p) p \]
\[p(3) = (1-p)^2 p \]
\[p(4) = (1-p)^3 p \]