Linear space, basis, and linear transformation

1 Linear space

Def. (Defn 4.1.1 in our book, Linear spaces, some books call it as Vector spaces)

A linear space V is a set endowed with a rule for addition (if f and g are in V, then so is $f + g$) and a rule for scalar multiplication (if f is in V and k in \mathbb{R}, then kf is in V) such that these operations satisfy the following eight rules (for all f, g, h and all c, k in \mathbb{R}):

1. $(f + g) + h = f + (g + h)$.
2. $f + g = g + f$.
3. There exists a neutral element n in V such that $f + n = f$, for all f in V. This n is unique and denoted by 0.
4. For each f in V there exists a g in V such that $f + g = 0$. This g is unique and denoted by $(-f)$.
5. $k(f + g) = kf + kg$.
6. $(c + k)f = cf + kf$.
7. $c(kf) = (ck)f$.
8. $1f = f$.

This is an abstract definition. To determine if a set V is (or is not) a linear space, we could only verify V and its $+$ and scalar multiplication satisfies (or does not satisfy) the definition.

Example 1.

a) (Example 3 in the textbook, page 154)

$$F(\mathbb{R}, \mathbb{R}) = \{ \text{all functions from } \mathbb{R} \text{ to } \mathbb{R} \}.$$

b)

$$C(\mathbb{R}) = \{ \text{all continuous functions from } \mathbb{R} \text{ to } \mathbb{R} \}.$$

c)

$$P = \{ \text{all polynomials with one variable} \}.$$

d)

$$P_n = \{ \text{all polynomials with degree } \leq n \}.$$

We can use the definition of linear space to verify that these are all linear spaces.

1.1 Subspaces

Def. (Defn 4.1.2 in our book, Subspaces)

A subset W of a linear space V is called a subspace of V if

a. W contains the neutral element 0 of V.
b. W is closed under addition (if f and g are in W), then so is $f + g$.
c. W is closed under scalar multiplication (if f is in W and k is a scalar, then kf is in W).

Example 1’. In example 1, there is a sequence of linear spaces, each preceding one are subspaces of successive ones.

$$P_n \subset P \subset C(\mathbb{R}) \subset F(\mathbb{R}, \mathbb{R}).$$

Example 2. Determine is the following set are subspaces of $\mathbb{R}^{n \times m}$, where $\mathbb{R}^{n \times m}$ consists of all $n \times m$ matrices.

a) $V_0 = \{ \text{all rank 0 matrices} \}$.

b) \(V_1 = \{ \text{all rank 1 matrices} \} \).

Solution. a) Rank 0 matrix has only 1 possibility, that is 0 matrix. Therefore, \(V_0 = \{ 0 \} \) is a subspace. (Note that \(\{ 0 \} \) is the simplest linear space.)

b) \(V_1 \) does not contain 0 matrix, i.e., neutral element. So \(V_1 \) doesn’t satisfy the a) in the definition of subspace. Therefore, \(V_1 \) is not a subspace of \(\mathbb{R}^{n \times m} \).

2 Basis

Basis is an important concept in linear algebra. Let’s introduce its definition first.

Def. (Defn 4.1.3 in our book, **Span**, linear independence, basis)
Consider the elements \(f_1, \ldots, f_n \) in a linear space \(V \).

a. We say that \(f_1, \ldots, f_n \) span \(V \) if every \(f \) in \(V \) can be expressed as a linear combination of \(f_1, \ldots, f_n \).

b. We say that \(f_1, \ldots, f_n \) are linearly independent if the equation

\[
\sum_{i=1}^{n} c_i f_i = 0
\]

has only the trivial solution

\[
\sum_{i=1}^{n} c_i = 0.
\]

(This definition is equivalent to say \(f_1, \ldots, f_n \) are redundant Defn 3.2.3. If you are interested, you can show it yourself.)

c. We say that elements \(f_1, \ldots, f_n \) are a basis of \(V \) if they span \(V \) and are linearly independent.

Def. (fact 4.1.5 in our book, **Dimension**, and Defn 4.1.8. **Finite dimensional linear spaces, Infinite dimensional spaces.**)

If a linear space \(V \) has a basis with \(n \) elements, then

\[
\dim(V) = n,
\]

and \(V \) is called finite dimensional. Otherwise, the space is called infinite dimensional.

Example 3. In example 1, \(P, C(\mathbb{R}), \) and \(F(\mathbb{R}, \mathbb{R}) \) are all infinite dimensional spaces since \(\{ 1, x, x^2, \ldots, x^n, \ldots \} \) are infinitely many linearly independent vectors in the linear spaces. We couldn’t find a basis with finitely many vectors.

Example 4. (Another generic infinite dimensional linear space) Example 5 in the textbook, page 154.

The set of all infinite sequences of real numbers is a linear space, where addition and scalar multiplication are defined term by term:

\[
(x_0, x_1, x_2, \ldots) + (y_0, y_1, y_2, \ldots) = (x_0 + y_0, x_1 + y_1, x_2 + y_2, \ldots)
\]

\[
k(x_0, x_1, x_2, \ldots) = (kx_0, kx_1, kx_2, \ldots).
\]

2.1 Generic finite dimensional linear space and their basis

Note that the basis of a linear space is **NOT** unique. For instance, if \(\{ \vec{v}_1, \ldots, \vec{v}_n \} \) is a basis, then \(\{ k_1 \vec{v}_1, \ldots, k_n \vec{v}_n \} \), where \(k_i \) are all nonzero scalars, and \(\{ \vec{v}_1, \vec{v}_1 + \vec{v}_2, \vec{v}_1 + \vec{v}_2 + \vec{v}_3, \ldots, \vec{v}_1 + \vec{v}_2 + \cdots + \vec{v}_n \} \) are both bases as well.

Example 5.

a)

\[
\mathbb{R}^{n \times m} = \{ \text{all } n \times m \text{ matrices} \}.
\]
Its standard basis is \(\{E_{ij}\}, 1 \leq i \leq n, 1 \leq j \leq m \), where \(E_{ij} \) is the matrix with the entry \(a_{ij} = 1 \), i.e., the entry located in the \(i \)th row and the \(j \)th column is 1, else is 0.

Therefore, \(\dim(\mathbb{R}^{n \times m}) = mn \).

b) \(\mathbb{R}^{n \times n} = \{ \text{all} \ n \times n \text{ matrices} \} \).

Its standard basis is \(\{E_{ij}\}, 1 \leq i, j \leq n \). And \(\dim(\mathbb{R}^{n \times n}) = n^2 \).

c) \(U^{n \times n} = \{ \text{all upper triangular} \ n \times n \text{ matrices} \} \).

Its basis is \(\{E_{ij}\}, 1 \leq i \leq j \leq n \). And \(\dim(U^{n \times n}) = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \).

d) \(D^{n \times n} = \{ \text{all diagonal} \ n \times n \text{ matrices} \} \).

Its basis is \(\{E_{ij}\}, 1 \leq i \leq n \). And \(\dim(D^{n \times n}) = n \).

e) \(P_n = \{ \text{all polynomials with degree} \ \leq n \} \) as defined in example 1.

It has a standard basis \(\{1, x, x^2, \ldots, x^n\} \). Generally, \(\{1, (x-a), (x-a)^2, \ldots, (x-a)^n\} \), where \(a \) is any real number, is also a basis. \(\dim P_n = n+1 \).

f) \(\mathbb{R}^n \). The most familiar finite dimensional linear space so far.

Its standard basis \(\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n \). And \(\dim(\mathbb{R}^n) = n \).

2.2 Why basis is important

In this section, we only consider finite dimensional linear space.

1. You can view basis \(\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_n\} \) as a coordinate system. Every vector \(\vec{v} \) can be uniquely written as a linear combination of \(\{\vec{v}_1, \ldots, \vec{v}_n\} \), i.e., \(\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n \), and\
 \[
 \begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_n
 \end{bmatrix}
 \]
 is called the coordinates of \(\vec{v} \) with respect to \(\mathcal{B} \).

2. For a linear transformation \(T : V \to V \), \(T \) is uniquely determined by its image on a basis \(\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_n\} \). And there is a matrix \(B = \begin{bmatrix} [T(\vec{v}_1)]_{\mathcal{B}} & \cdots & [T(\vec{v}_n)]_{\mathcal{B}} \end{bmatrix} \), such that \(T \) is given by formula
 \[
 [T(\vec{x})]_{\mathcal{B}} = B[\vec{x}]_{\mathcal{B}}, \forall \vec{x} \in V.
 \]

3 Linear Transformation

Def. (fact 4.2.1 in our book, Linear transformation, image, kernel, rank, nullity)

Consider two linear spaces \(V \) and \(W \). A function \(T \) from \(V \) to \(W \) is called a **linear transformation** if

\[
T(f + g) = T(f) + T(g) \quad \text{and} \quad T(kf) = kT(f)
\]

for all elements \(f \) and \(g \) of \(V \) and for all scalars \(k \).

For a linear transformation \(T \) from \(V \) to \(W \), we set

\[
\text{im} \ T = \{T(f) : f \in V\}
\]

and

\[
\ker(T) = \{f \in V : T(f) = 0\}.
\]

Note that \(\text{im}(T) \) is a subspace of codomain \(W \) and that \(\ker(T) \) is a subspace of domain \(V \).

If the image of \(T \) is finite dimensional, then \(\dim(\text{im} \ T) \) is called the **rank** of \(T \), and if the kernel of \(T \) is finite dimensional, then \(\dim(\ker T) \) is the **nullity** of \(T \).

If \(V \) is finite dimensional, then the rank-nullity theorem holds (see Fact 3.3.7):

\[
\dim V = \text{rank } T + \text{nullity } T = \dim(\text{im} \ T) + \dim(\ker T).
\]
Example 6. Show $T : P \to P$, where P is defined in example 1, given by

$$T(f(x)) = \int_0^x f(t)dt,$$

is a linear transformation. And find $\ker T$ and $\text{im} T$.

Solution. By the definition of linear transformation, we need to show

$$T(f(x) + g(x)) = T(f(x)) + T(g(x)) \text{ and } T(kf(x)) = kT(f(x)).$$

And this is true because the linearity of integration.

Suppose $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ is a polynomial in P. If $f(x) \in \ker T$, i.e.,

$$T(f(x)) = \int_0^x f(t)dt = a_0x + \frac{1}{2}a_1x^2 + \cdots + \frac{a_n}{n+1}x^{n+1} = 0 \Rightarrow a_0 = a_1 = \ldots = a_n = 0 \Rightarrow f(x) = 0.$$

Therefore, $\ker T = \{0\}$.

From the formula,

$$T(f(x)) = \int_0^x f(t)dt = a_0x + \frac{1}{2}a_1x^2 + \cdots + \frac{a_n}{n+1}x^{n+1},$$

the image of a polynomial could be any polynomial except nonzero constant. Therefore,

$$\text{im} T = \{\text{all polynomials with degree } \geq 1 \text{ or } 0\}.$$

Thus $\text{im}(T) \neq P$, i.e., T is not onto.

3.1 Isomorphisms

Def. (defn 4.2.2 in our book, *Isomorphisms and isomorphic spaces*)

An invertible linear transformation is called an **isomorphism**. We say that the linear space V is **isomorphic** to the linear space W if there exists an isomorphism from V to W.

Fact 4.2.4 in our book, *Properties of isomorphism*

a. A linear transformation T from V to W is an isomorphism if (and only if) $\ker T = \{0\}$ and $\text{im}(T) = W$.

In parts (b) and (c), the linear spaces V and W are assumed to be finite dimensional.

b. If V is isomorphic to W, then $\dim V = \dim W$.

c. Suppose T is a linear transformation from V to W with $\ker T = \{0\}$. If $\dim V = \dim W$, then T is an isomorphism.

Example 7. Determine if the linear transformation given in example 6 is an isomorphism.

Because P is infinite dimensional, we couldn’t use property c). So we need to use property a). Since $\text{im} T \neq P$, we get T is not an isomorphism.