Kernel and Image of a linear transformation

Kernel and image is not very hard! Here I gave some examples to illustrate these concepts.

1 Function case

The parallel concepts in function case of kernel and image is $f^{-1}(0)$ and range of f.

Example 1. Let $f(x) = x^2$ from $\mathbb{R} \to \mathbb{R}$ be a function.

Then, by definition,

$$f^{-1}(0) = \{ x \in \mathbb{R} | f(x) = 0 \}, \quad \text{range } f = \{ f(x) \text{ for all } x \in \mathbb{R} \}$$

From the definition, $f^{-1}(0)$ is a set consists of all $x \in \mathbb{R}$ such that $f(x) = 0$. So in our problem, $f(x) = x^2 = 0 \Rightarrow x = 0$. Therefore, $f^{-1}(0)$ consists of only one element 0, i.e., $f^{-1}(0) = \{0\}$.

range $f = \{ f(x) = x^2 \text{ for all } x \}$, so range $f = [0, \infty)$.

Therefore, in the problem, domain of f is \mathbb{R}, codomain of f is \mathbb{R}, $f^{-1}(0) = \{0\}$ and range $f = [0, \infty) \neq \text{codomain}$.

Example 2. Let $f(x) = \sin x$ from $\mathbb{R} \to \mathbb{R}$ be a function.

Then $f^{-1}(0)$ is the set consists of all x such that $f(x) = 0$. Therefore,

$$f^{-1}(0) = \{ \cdots, -3\pi, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \cdots \}.$$

range f is the set consists all $f(x) = \sin x$, so range $f = [-1, 1]$.

Therefore, in the problem, domain of f is \mathbb{R}, codomain of f is \mathbb{R}, $f^{-1}(0) = \{ \cdots, -3\pi, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \cdots \}$ and range $f = [-1, 1] \neq \text{codomain}$.

2 Linear transformation case

Example 3. Let $T(\vec{v}) = \vec{0}$ from V to W, where V and W are two linear spaces (V and W may be infinite dimensional). Show T is a linear transformation and find ker T and im T.

To show T is a linear transformation, we need to verify two conditions

$$T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2) \quad \text{and} \quad T(k\vec{v}) = kT(\vec{v}).$$

I only show $T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2)$, you can verify the other.

By definition of T, LHS=$T(\vec{v}_1 + \vec{v}_2) = \vec{0}$. RHS=$T(\vec{v}_1) + T(\vec{v}_2) = \vec{0} + \vec{0} = \vec{0}$=LHS.

So T is a linear transformation.

ker T is the SET in V consists of all vectors $\vec{v} \in V$ such that its image $T(\vec{v}) = \vec{0}$. By our definition of T, all vectors $\vec{v} \in V$ satisfy $T(\vec{v}) = \vec{0}$. Therefore, ker $T = V$.

im T is the SET in W consists of all vectors $T(\vec{v})$. By the definition of T, im T consists of only one element $\vec{0}$. Therefore, im $T = \{0\}$.

Therefore, domain of T is V, codomain of T is W, ker $T = V$ and im $T = \{0\}$.

3 How to find ker T and im T

To answer this question, I couldn’t find one method work for any case. By my experience, it depends on how do problems give linear transforms T. I try to illustrate this by using examples.
3.1 Using the matrix corresponding to linear transformation

Example 4 (Midterm 1.) T is a linear transformation from \mathbb{R}^3 to \mathbb{R}^3 with the properties that $T(\vec{e}_1) = \vec{0}, T(\vec{e}_2) = \vec{0},$ and $T(\vec{v}) = \vec{v}$.

We can use column by column method to find the matrix B with respect to the basis $\mathfrak{B} = \{\vec{e}_1, \vec{e}_2, \vec{v}\}$.

$$B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So $\ker T = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{\mathfrak{B}}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}_{\mathfrak{B}} \right\} = \text{span} \{\vec{e}_1, \vec{e}_2\}$.

(Note that there are two free variables in the matrix B and the coordinate $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{\mathfrak{B}}$ represents vector \vec{e}_1.)

$\text{im} T = \text{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}_{\mathfrak{B}} \right\} = \text{span} \{\vec{v}\}$. A basis of $\ker T$ is $\{\vec{e}_1, \vec{e}_2\}$. A basis of $\text{im} T$ is $\{\vec{v}\}$. Nullity of $T = 2$ and rank of $T = 1$.

Example 5. (Exer 4.3 prob 6.) $T(M) = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ M from $U^{2\times 2}$ to $U^{2\times 2}$.

First we need to find the matrix B with respect to a basis \mathfrak{B}. Here we can choose the standard basis $\mathfrak{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ of $U^{2\times 2}$.

By computation, we get

$$T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

So

$$\left[T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) \right]_{\mathfrak{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Similarly, we can get the other two coordinates. Therefore, we can get the matrix

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

There is no free variables in B. So $\ker T = \{0\}$.

$\text{im} T = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{\mathfrak{B}}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}_{\mathfrak{B}} \right\} = \text{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix} \right\} = U^{2\times 2}$.

Therefore, T is an isomorphism.

Can you find the general way from the matrix corresponding to the linear transformation to find \ker and im?
3.2 Using definition of ker and im

Example 5. The problem is the same as example 5, and we try to use definition of ker and im to find them.

By the definition, $\ker T$ is the set consists of all matrices $M \in U^{2 \times 2}$ such that $T(M) = 0$.

$$T(M) = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \Rightarrow M = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^{-1} \cdot 0 = 0,$$

notice that $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is invertible. Therefore, $\ker T = \{0\}$.

And by the formula, nullity+rank of $T=\dim U^{2 \times 2}$, we get rank of $T = \dim \ker T = \dim U^{2 \times 2} = 3$ since nullity=dim ker $T = 0$. So $\text{im } T = U^{2 \times 2}$. (Here we use a general result, if W is a subspace of V and $\dim W = \dim V$, then $W = V$. And $\text{im } T$ is a subspace of $U^{2 \times 2}$.)

If we want to find $\ker T$ and $\im T$ of a linear transformation from V to W, where V or W is infinite dimensional linear space, then we **have to** use definition way to find them. We couldn’t use matrix way to find them.

V denotes the space of infinite sequences of real numbers. Notice that V is a infinite dimensional linear space.

Example 6. (Exer 4.2 prob 34.) $T(x_0, x_1, x_2, \ldots) = (0, x_0, x_1, x_2, \ldots)$ from V to V.

This is our homework problem, and we know that $\ker T = \{0\}$ and

$$\text{im } T = \{(0, x_0, x_1, x_2, \ldots) | x_i \text{ can be arbitrary real numbers}\}.$$

So $\text{im } T \neq V$.

Example 7. (Exer 4.2 prob 33.) $T(x_0, x_1, x_2, x_3, x_4, \ldots) = (x_0, x_2, x_4, \ldots)$ from V to V (we are dropping every other term).

By definition, $\ker T$ consists of all sequences $(x_0, x_1, x_2, x_3, x_4, \ldots)$ such that

$$T(x_0, x_1, x_2, x_3, x_4, \ldots) = (x_0, x_2, x_4, \ldots) = (0, 0, 0, \ldots).$$

Therefore, $\ker T = \{(0, x_1, 0, x_3, 0, x_5, 0, x_7, \ldots) | x_i \text{ can be arbitrary, } i \text{ is odd}\}$. So $\ker T \neq \{0\}$, i.e., T is not an isomorphism.

$\text{im } T$ is the set consists of all $T(x_0, x_1, x_2, x_3, x_4, \ldots) = (x_0, x_2, x_4, \ldots)$. Therefore, $\text{im } T = V$, i.e., T is onto.

You can choose an easier way to find \ker or \im.

4 Isomorphisms and invertible linear transformations

An invertible linear transformation is called an **isomorphism**. To make clear of isomorphisms we need to make clear of invertible linear transformations and how to determine if a linear transformation is invertible.

4.1 Finding T^{-1}

If we could find T^{-1} of T, then T is invertible.

Example 5’ The problem is the same as example 5. And we’ve already known T is invertible (or an isomorphism). We try to use another way to show the same answer, i.e., trying to find T^{-1}.

Notice that $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is an invertible matrix, so we can define $T^{-1}(M) = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}^{-1} M$. And we can verify $T^{-1}T = TT^{-1} = \text{identity map from } U^{2 \times 2} \text{ to } U^{2 \times 2}$.

In general, if a linear transformation T is given by $T(M) = AM$ or $T(M) = MA$ where A is an invertible matrix, then T is an invertible linear transformation.

(Actually, some of you use this way to solve homework problems.)
4.2 Using \(\ker T \) and \(\im T \)

Basically, this way is to find \(\ker \) and \(\im \), and use some properties to determine if \(T \) is invertible or isomorphism.

There are three properties.

G. A linear transformation \(T \) from \(V \) to \(W \) is an isomorphism if and only if \(\ker T = \{0\} \) and \(\im T = W \). (This property works for any case, finite dimensional linear space or infinite dimensional linear space)

F1. If we’ve known that \(V \) is a finite dimensional linear spaces and \(T \) is a linear transformation from \(V \) to \(V \), then \(\ker T = \{0\} \) **OR** \(\im T = W \) implies \(T \) is invertible or an isomorphism. (Do you notice the difference between this and the above one?)

F2. Suppose \(T \) is a linear transformation from \(V \) to \(W \) with \(\ker T = \{0\} \), where \(V \) and \(W \) are finite dimensional linear spaces. If \(\dim V = \dim W \), then \(T \) is an isomorphism.

You can see example 5,6,7.

4.3 using matrix corresponding to \(T \)

The above two ways can determine if \(T \) is an isomorphism in general. *In general* means \(T \) can be a linear transformation from arbitrary \(V \) to \(W \), where \(V \) and \(W \) can be infinite dimensional or finite dimensional.

However this way, using matrix, only works for finite dimensional linear spaces case, i.e., \(V \) and \(W \) are finite dimensional linear space.

Example 5 The problem is the same as example 5. In example 5, we’ve already known the matrix \(B \) corresponding to \(T \) wrt \(\mathcal{B} \) is

\[
B = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{bmatrix}.
\]

\(B \) is an invertible matrix. Therefore, \(T \) is an isomorphism. (Notice that if \(B \) is not invertible, then \(T \) is not invertible or an isomorphism.)

So this way is to find the matrix \(B \) corresponding to \(T \) first. And the invertibility of \(B \) determines the invertibility or isomorphism of \(T \). Actually, some of you use this way to solve homework exercises.