Theorem: Let \(f_j : U \to \mathbb{C}, j = 1, 2, 3, \ldots \) be a sequence of holomorphic functions on an open set \(U \) in \(\mathbb{C} \). Suppose that there is a function \(f : U \to \mathbb{C} \) such that for each compact subset \(E \) of \(U \), the sequence \(f_j|_E \) converges uniformly to \(f|_E \). Then \(f \) is holomorphic on \(U \). In particular, \(f \in C^\infty(U) \).

(See Theorem 3.5.1 on Page 88.)
The Zeros of a Holomorphic Function

Theorem: Let $U \subset \mathbb{C}$ be a connected open set and let $f : U \rightarrow \mathbb{C}$ be holomorphic. Let $Z := \{z \in U, f(z) = 0\}$. If there exists a $z_0 \in Z$ and $\lim z_i = z_0$, $z_i \neq z_0 \in Z$ (accumulating point), then $f \equiv 0$.

(See Theorem 3.6.1 on Page 90.)
Proof of Fundamental Theorem of Algebra

Any polynomial \(p(z) \) of degree \(n \) has \(n \) roots (counted with multiplicity).

(See Theorem 3.4.5, Corollary 3.4.6 on Page 87.)

Proof:

- It suffices to show for \(n \geq 1 \) that \(p(z) \) has at least one root. This is because:
 - If \(z_1 \) is a root of \(p \), then \(p(z) = (z - z_1)p_1(z) \)
 - \(p_1(z) \): polynomial of degree \(n - 1 \).
 - We can assume \(p_1(z) \) have \(n - 1 \) roots by induction. So \(p(z) \) has \(n \) roots.
Proof of Fundamental Theorem of Algebra, continued

Suppose $p(z) = a_nz^n + a_{n-1}z^{n-1} + \cdots + a_0$ and has no root.

- $\frac{1}{p(z)}$ has no pole and is an entire function;
- Take $R > \min(1, 2 \cdot \frac{|a_{n-1}| + \cdots + |a_0|}{|a_n|})$, then for any $|z| > R$,

 $$|p(z)| \geq |a_n z^n| - |a_{n-1} z^n + \cdots + a_0|$$
 $$\geq |a_n| R^n - (\sum_{j=0}^{n-1} |a_j|) R^{n-1}$$
 $$\geq |a_n| R^n - \frac{|a_n| R}{2} \cdot R^{n-1}$$
 $$= \frac{|a_n|}{2} R^n.$$

- So $\frac{1}{p(z)}$ is bounded on $|z| > R$.

Chapter 2 Complex Line Integrals Chapter 3 Applications of the Cauchy Integrals,
Bounds on holomorphic functions
Proof of Fundamental Theorem of Algebra, continued

- $\frac{1}{p(z)}$ is bounded on $|z| \leq R$, too.
- Therefore, $\frac{1}{p(z)}$ is a bounded entire function, hence constant.
- So $p(z)$ is also constant, this contradicts that $n \geq 1$. □
► first proof of Fundamental Theorem of Algebra: Gauss 1799
► first time taught in a textbook:
Figure: Augustin-Louis Cauchy (1789-1857)
Cauchy’s Integral Formula, circle case

Suppose a disk $|z - a| \leq r$, boundary included, is inside the domain of analyticity of f. Then Cauchy’s Integral Formula says:

$$f(a) = \frac{1}{2\pi i} \int_{|z-a|=r} \frac{f(z)}{z-a} \, dz$$

$$= \frac{1}{2\pi i} \int_{t=0}^{2\pi} \frac{f(a+re^{it})}{re^{it}} \, d(a + re^{it})$$

$$= \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(a+re^{it})}{re^{it}} \cdot rie^{it} \, dt$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{it}) \, dt.$$

That is, $f(a)$ is the average value of f on the circle $|z - a| = r$.

Chapter 2 Complex Line Integrals Chapter 3 Applications of the Cauchy Integrals, Section Bounds on holomorphic functions
Corollary

In the setting above, \(f(a) = \frac{1}{\pi r^2} \int \int_{|z-a| \leq r} f(z) dx dy \)

"Proof: " Take average on every circle centered at \(a \) with radius \(\leq r \), then take weighted average over these circles.
Maximum Principle

Lemma: For a holomorphic function f, if $|f|$ achieves its maximum value in the disk $D = \{|z - a| \leq r\}$ at a, then f is a constant function in D.

Proof of Lemma

- Write $w = f(a)$, then $1 = \frac{f(a)}{w}$ equals the average value $\int\int_D \frac{f(z)}{w} \, dx \, dy$ in the disk.
- For each z, $|f(z)| \leq |w|$, $\left| \frac{f(z)}{w} \right| \leq 1$ and $\Re \frac{f(z)}{w} \leq 1$. So $\Re \int\int_D \frac{f(z)}{w} \, dx \, dy = \int\int_D \Re \frac{f(z)}{w} \, dx \, dy \leq 1$.
- As equality is achieved, we must have $\Re \frac{f(z)}{w} = 1$ for every z. This implies $\frac{f(z)}{w} = 1$ for every z in the disk. □
Maximum Principle

Theorem

If \(f \) is holomorphic in a domain \(D \), continuous on \(\partial D \), and \(|f(z)| \) achieves its maximum at a point \(a \) inside \(D \), then \(f \) is a constant.

(See Theorem 5.4.2 on Page 170.)

In other words, a non-constant analytic function must achieve its maximal absolute value on the boundary of the domain.
Proof of Maximum Principle

Suppose \(f(b) \neq f(a) \) for some \(b \in D \). As \(D \) is connected, we can find a piecewise smooth path \(\gamma \) in \(D \) from \(a \) to \(b \).

Let \(c \) be the furthest point from \(a \) on the path (not by Euclidean distance, but by the travel distance along the path from \(a \)), such that \(f(c) = f(a) \).
Proof of Maximum Principle

Fix a tiny disk $|z - c| \leq r$ in D centered at c. Then the disk contains points $c' \in \gamma$ with $f(c') \neq f(a)$. But $|f|$ achieves at c its maximum in the disk.

This is a contradiction to the previous lemma! □
Homeworks

Reading material: Chapter 3.2 Power series convergence and its convergence tests
MATH311: Complex Analysis

Chapter 5: Series

Yi Wang, Johns Hopkins University

Spring 2020
What is a series?

A series is:

- a formal sum \(\sum_{j=0}^{\infty} c_j \);
- or equivalently: \(c_0 + c_1 + c_2 + \cdots \)
 the terms \(c_j \) are complex numbers.

The index \(j \) is a dummy variable. For example, \(\sum_{n=0}^{\infty} c_n \) and \(\sum_{k=0}^{\infty} c_k \) are the same series.

- One may also let the series start at a different index other than 0. For example, \(\sum_{n=5}^{\infty} \frac{1}{n^2} = \frac{1}{5^2} + \frac{1}{6^2} + \cdots \).
Convergence of a series

■ When does it make sense, i.e. have a value?

Definition A series $\sum_{j=0}^{\infty} c_j$ converges if the sequence

$$S_n = \sum_{j=0}^{n} c_j$$

converges. And in this case the value of the series is $\lim_{n \to \infty} S_n$. Otherwise, we say the series diverges.

■ Changing or omitting finitely many terms at the beginning of the series would not affect convergence/divergence, e.g.

$\sum_{j=0}^{\infty} c_j$ converges if and only if $\sum_{j=100}^{\infty} c_j$ does.
Let \(\{a_n : n = 0, 1, \cdots \} \) be a sequence of complex values.

\(a_n \) converges to a limit \(L \) if for any \(\epsilon > 0 \), there is \(n_0 \), such that
\[
|a_n - L| < \epsilon \quad \text{whenever} \quad n \geq n_0.
\]

Example

- The sequence \(1, 0, 1, 0, 1, 0, \cdots \) doesn’t converge.

Hence \(\sum_{j=0}^{\infty} (-1)^j \) doesn’t converge.

(Notice \(S_n = 1 \) if \(n \) is even and \(S_n = 0 \) if \(n \) is odd).
Review: convergence of sequences

Let \(\{a_n : n = 0, 1, \cdots \} \) be a sequence of complex values.

\[a_n \text{ converges if and only if it is a Cauchy sequence}, \text{ i.e:} \]

For all \(\epsilon > 0 \), there is \(n_0 \) such that \(|a_m - a_n| < \epsilon \) whenever \(m, n \geq n_0 \).

For sequences, this can be formulated as:

\[\sum_{j=0}^\infty c_j \text{ converges if and only if: for all } \epsilon > 0, \text{ there is } n_0 \text{ such that } |c_n + \cdots + c_m| < \epsilon \text{ whenever } m \geq n \geq n_0. \]

Corollary: In particular, if \(\sum_{j=0}^\infty c_j \) converges, then \(\lim_{j \to \infty} c_j = 0 \).
Convergence tests: 1. Comparison Test

Theorem

If: $|c_j| \leq M_j$; and $\sum_{j=1}^{\infty} M_j$ converges, then $\sum_{j=1}^{\infty} c_j$ converges.

Definition: $\sum_{j=1}^{\infty} c_j$ absolutely converges if $\sum_{j=1}^{\infty} |c_j|$ converges.

Corollary: In particular, $\sum_{j=1}^{\infty} c_j$ converges if it absolutely converges.
Examples

Given the fact that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges:

- $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converges.
- $\sum_{n=1}^{\infty} \frac{e^{3in^5}}{n^2+1}$ absolutely converges, and therefore converges.
Convergence tests: 2. Ratio Test

Theorem

Suppose \(\lim_{j \to \infty} \left| \frac{c_{j+1}}{c_j} \right| \) exists and equals \(L \).

- If \(L < 1 \), then \(\sum_{j=1}^{\infty} c_j \) converges;
- If \(L > 1 \), then \(\sum_{j=1}^{\infty} c_j \) diverges.

When \(L = 1 \), the known information is not sufficient to guarantee either convergence or divergence. A more detailed study of the series is required.
Corollary: The geometric series $\sum_{j=0}^{\infty} c^j$ converges if $|c| < 1$ and diverges if $|c| > 1$.

Question: What if $|c| = 1$?

No, because $c^j \not\to 0$ as $j \to \infty$.

Geometric series
If $|c| < 1$, then $\sum_{j=0}^{\infty} c^j = \frac{1}{1-c}$.

Proof: Let $S_n = \sum_{j=0}^{n} c^j = 1 + c + \cdots + c^n$. Then

$$c \cdot S_n = c + \cdots + c^n + c^{n+1} = S_n - 1 + c^{n+1},$$

so $S_n = \frac{1-c^{n+1}}{1-c}$.

$$\sum_{j=0}^{\infty} c^j = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1-c^{n+1}}{1-c} = \frac{1}{1-c}. \qed$$
Example 1

Does \(\sum_{j=0}^{\infty} \left(\frac{8j \sin j}{2j^2 - 1} \right) j \) converge?

If we can show the series absolutely converges, that is,

\[
\sum_{j=0}^{\infty} \left| \left(\frac{8j \sin j}{2j^2 - 1} \right) j \right| \leq \sum_{j=0}^{\infty} \left(\frac{8j}{|2j^2 - 1|} \right) j
\]

converges, then the series converges.

\(\triangleright \) When \(j \geq 1 \), \(j^2 \geq 1 \) and \(2j^2 - 1 \geq j^2 \geq 0 \), so

\[
\frac{8j}{|2j^2 - 1|} \leq \frac{8j}{j^2} \leq \frac{8}{j};
\]

\(\triangleright \) When \(j \geq 9 \), \(\frac{8j}{|2j^2 - 1|} \leq \frac{8}{9} \);
Example 1, continued

We compare \(\sum_{j=0}^{\infty} \left(\frac{8j}{|2j^2 - 1|} \right)^j \) to \(\sum_{j=0}^{\infty} \left(\frac{8}{9} \right)^j \).

The first finitely many terms can be ignored. And starting from \(j = 9 \), the terms in the first series are smaller.

\[\sum_{j=0}^{\infty} \left(\frac{8}{9} \right)^j \] converges, because it is a geometric series with \(c < 1 \).

So \(\sum_{j=0}^{\infty} \left(\frac{8j}{|2j^2 - 1|} \right)^j \) converges.

Therefore, \(\sum_{j=0}^{\infty} \left(\frac{8j \sin j}{2j^2 - 1} \right)^j \) converges.
Example 2

Recall that \(j! = 1 \cdot 2 \cdots j \) and \(0! = 1 \). Show that for any complex number \(a \), \(\sum_{j=0}^{\infty} \frac{a^j}{j!} \) converges.

Proof: Use ratio test, the quantity to be tested is

\[
\lim_{j \to \infty} \left| \frac{a^{j+1}}{(j+1)!} / \frac{a^j}{j!} \right| = \lim_{j \to \infty} \left| \frac{a^{j+1} / a^j}{(j+1)! / j!} \right| = \lim_{j \to \infty} \frac{|a|}{j+1} = 0.
\]

Since \(0 < 1 \), this shows the original series converges. \(\Box \)

We will see later that the series is equal to \(e^a \).
Now we let $c_j = f_j(z)$ depend on z in a series.

Definition: $\sum_{j=0}^{\infty} f_j(z)$ uniformly converges to $F(z)$ on a set $D \subset \mathbb{C}$ if:

for any $\epsilon > 0$, there is n_0, such that $|\sum_{j=0}^{n} f_j(z) - F(z)| < \epsilon$

whenever $n \geq n_0$ and $z \in D$.

The uniform convergence of $\sum_{j=0}^{\infty} f_j(z)$ on D is equivalent to being **uniformly Cauchy**, i.e.

for any $\epsilon > 0$, there is n_0, such that $|\sum_{j=n}^{m} f_j(z)| < \epsilon$ whenever $m \geq n \geq n_0$ and $z \in D$.
Example 3

Fix $a \in \mathbb{C}$.

a. For which z does the series $\sum_{j=0}^{\infty} \frac{z^j}{a^j}$ converge?

Answer: $\sum_{j=0}^{\infty} \frac{z^j}{a^j} = \sum_{j=0}^{\infty} \left(\frac{z}{a}\right)^j$ converges $\iff |\frac{z}{a}| < 1 \iff |z| < |a|$.

b. What is the limit function?

Answer: $\frac{1}{1-z} = \frac{a}{a-z}$.

c. Does this series uniformly converge to $\frac{a}{a-z}$ on $|z| < |a|$?

Answer: No. The sequence is not uniformly Cauchy, since for $\epsilon = \frac{1}{2}$, for any n_0, there are $n \geq n_0$ and z with $|z| < |a|$ such that $\left|\left(\frac{z}{a}\right)^n\right| > \frac{1}{2}$. In fact, we can take any $n \geq n_0$, and z with $\frac{|z|}{a}$ sufficiently close to 1, depending on n.
Example 3, continued

d. For $r < |a|$ show that $\sum_{j=0}^{\infty} \frac{z^j}{a^j}$ uniformly converges on $|z| \leq r$.

Proof: We know that $\sum_{j=0}^{\infty} \frac{r^j}{|a|^j}$ converges. So for any ϵ, there is n_0 such that for all $n \geq n_0$, $\sum_{j=n+1}^{\infty} \frac{r^j}{|a|^j} < \epsilon$. Then $\sum_{j=n+1}^{\infty} \left| \frac{z^j}{a^j} \right| < \epsilon$ for all z with $|z| \leq r$. This shows $\left| \sum_{j=n+1}^{\infty} \frac{z^j}{a^j} \right| < \epsilon$, or equivalently there exists a limit function $F(z)$, such that $\left| \sum_{j=n}^{\infty} \frac{z^j}{a^j} - F(z) \right| < \epsilon$ for all $n \geq n_0$ and $|z| \leq r$. \qed
Definition

- If \(f(z) \) has derivatives of all orders at \(a \), then the **Taylor series** around \(a \) is

\[
\sum_{j=0}^{\infty} \frac{f^{(j)}(a)}{j!} (z - a)^j = f(a) + f'(a)(z - a) + \frac{f''(a)}{2}(z - a)^2 + \cdots
\]

- Taylor series around 0 is also called **Maclaurin series**

- In calculus of a real variable, there are bad functions \(f \) such that, all derivatives are defined at a point \(x_0 \) but the Taylor series never converges to \(f(x) \) except at \(x = x_0 \).

- Key philosophy of this chapter: this cannot happen for complex analytic functions.
Main Theorem

If f is an analytic function on $|z - a| < R$, then its Taylor series around a converges to $f(z)$ at every z with $|z - a| < R$. Moreover, for any $r < R$, the convergence is uniform on $|z - a| \leq r$.

![Diagram of circle centered at a with radius r and R]