Open Manifolds with Nonnegative Ricci Curvature and Large Volume Growth

Xu Senlin

(Department of Mathematics, Central China Normal University, Wuhan, 430079)

Yang Fangyun and Wang Zuoqin

(Department of Mathematics, University of Science and Technology of China, Hefei, 230026)

Abstract: In this paper, we prove that if M is an open manifold with nonnegative Ricci curvature and large volume growth, positive critical radius, then $\sup_{p \in M} C_p = \infty$. As an application, we give a theorem which supports strongly Petersen's conjecture.

Key words: Open manifold, Nonnegative Ricci curvature, Critical radius, Volume Growth

2001 MR subject classification: 53C20

CLC number: 0186.16

Document code: A

Article ID: ?

§1 Introduction

Let M be an n-dimensional complete and noncompact Riemannian manifold with $Ric_M \geq 0$. By Bishop volume comparison theorem, $\frac{Vol[B(p, r)]}{\omega_n r^n}$ is a non-increasing function of r, where $B(p, r)$ denotes the ball with radius r around p in M, $Vol[B(p, r)]$ denotes the volume of $B(p, r)$, ω_n denotes the volume of the unit ball in \mathbb{R}^n. Let

$$\alpha_M = \lim_{r \to \infty} \frac{Vol[B(p, r)]}{\omega_n r^n}.$$

Obviously, $0 \leq \alpha_M \leq 1$. If $\alpha_M = 1$, by volume comparison theorem, M is isometric to \mathbb{R}^n. We say M has large volume growth if $\alpha_M > 0$.

Notice that the distance function $r_p(x) = d(p, x)$ is not a smooth function (on the cut locus of p). Hence the critical point of r_p are not defined in a usual sense. The notion of critical points of r_p is introduced by Grove-Shiohama[1].

A point $q \in M$ is called a critical point of r_p if for any unit vector $v \in T_q M$, there is a minimizing geodesic σ from q to p such that $\angle(\sigma'(0), v) \leq \frac{\pi}{2}$.

* Received date: 7. 7, 2000.

Foundation item: The NNSFC (19971081) and NECYSFC.
For any fixed point p in M, let
\[C_p = \sup \{ r > 0 \mid \text{there is no critical point of } p \in B(p, r) \}, \]
and define the critical radius of M to be $c(M) = \inf_{p \in M} C_p$. It is well known that if there is some point $p \in M$ such that $C_p = \infty$, then M is diffeomorphic to \mathbb{R}^n. In this paper we shall prove the following theorem.

Theorem 1 Let M be a complete and noncompact Riemannian manifold, $\text{Ric}_M \geq 0$, $\alpha_M > 0$, $\text{conj}_M \geq i_0 > 0$, $c(M) > 0$, then $\sup_{p \in M} C_p = \infty$.

Theorem 2 Let M be a complete and noncompact Riemannian manifold, $\text{Ric}_M \geq 0$, $\alpha_M > 0$, $K_M \geq -k^2$, $c(M) > 0$, then $\sup_{p \in M} C_p = \infty$.

Let M be a complete open Riemannian manifold. The generalized Busemann function $b_p : M \to \mathbb{R}$ with respect to a point p is defined by
\[b_p(x) = \lim_{q \to \infty} \sup_{q \in M} (d(p, q) - d(q, x)), \forall x \in M, \]
where $q \to \infty$ means the distance between $q \in M$ and a fixed point in M tending to infinity. It is easy to check that
\[b_p(x) = \lim_{t \to \infty} (t - d(x, S_t(p))), \]
where $S_t(p)$ is the metric sphere of radius $t \geq 0$ centered at p, and the function $t \to t - d(x, S_t(p))$ is non-increasing when $t \geq d(p, x)$. The excess of M at $p \in M$ is defined to be
\[e(p) := \sup_{x \in M} (d(p, x) - b_p(x)). \]
Define
\[e(M) := \sup_{p \in M} e(p), \]
and
\[\varepsilon_p(x) = d(x, S_{2r_p(x)}(p)) - r_p(x). \]
Obviously, we have
\[\varepsilon_p(x) \leq e(p) \leq e(M), \forall p, x \in M. \]

Let M be a complete noncompact Riemannian manifold. Fix a point $p \in M$. For any $r > 0$, let $k_p(r) = \inf_{p \in M \setminus B(p, r)} K$, where K denotes the sectional curvature of M, and the infimum is taken over all the sections at all points in $M \setminus B(p, r)$.

Petersen[2] conjectured that if $\text{Ric}_M \geq 0$, $\alpha_M > \frac{1}{2}$, then M is diffeomorphic to \mathbb{R}^n. In this paper, we shall prove the following:

Theorem 3 Let M be a complete and noncompact Riemannian manifold, $\text{Ric}_M \geq 0$, $\alpha_M > \frac{1}{2}$, $k_p(r) \geq -\frac{C}{(1+r)^\alpha}$ for some constant $C > 0$ and any point $p \in M$, $0 < \alpha \leq 2$, $e(M) < \infty$. Then M is diffeomorphic to \mathbb{R}^n.
§2 Proof of Theorem 1 and Theorem 2

First, we introduce some lemmas which will be needed in our proof of the theorems.

Lemma 1 ([3]) Let \(M \) be a complete, noncompact manifold, \(\text{Ric}_M \geq 0, \alpha_M > 0 \). Then there is a sequence \(\{x_i\} \subset M \), such that \((M, x_i)\) converges to \((\mathbb{R}^n, 0)\) in the pointed Gromov-Hausdorff topology.

Lemma 2 ([4]) Let \(M \) be a complete Riemannian manifold, \(K \geq c \).

(i) Let \(\gamma_i : [0, t_i] \to M, i = 0, 1, 2 \) be minimal geodesics with \(\gamma_1(0) = \gamma_2(t_2) = p, \gamma_0(0) = \gamma_1(t_1) \) and \(\gamma_0(l_0) = \gamma_2(0) \). Then, there exist minimal geodesics \(\tilde{\gamma}_i : [0, l_i] \to M^2(c) \), where \(M^2(c) \) is the surface with constant curvature, \(i = 0, 1, 2 \) with \(\tilde{\gamma}_1(0) = \tilde{\gamma}_2(l_2), \gamma_0(0) = \tilde{\gamma}_1(t_1) \) and \(\tilde{\gamma}_0(l_0) = \tilde{\gamma}_2(0) \) such that

\[
L(\gamma_i) = L(\tilde{\gamma}_i) \quad \text{for } i = 0, 1, 2
\]

and

\[
\angle(-\gamma_1'(t_1), \gamma_0'(0)) \geq \angle(-\tilde{\gamma}_1'(t_1), \tilde{\gamma}_0'(0)),
\]

\[
\angle(-\gamma_1'(t_0), \gamma_2'(0)) \geq \angle(-\gamma_0'(l_0), \gamma_2'(0)).
\]

(ii) Let \(\gamma_i : [0, t_i] \to M, i = 1, 2 \) be two minimizing geodesics starting from \(p \). Let \(\tilde{\gamma}_i : [0, l_i] \to M^2(c), i = 1, 2 \) be minimizing geodesics starting from some point such that

\[
\angle(\gamma_1'(0), \gamma_2'(0)) = \angle(\tilde{\gamma}_1'(0), \tilde{\gamma}_2'(0)). \quad \text{Then } d(\gamma_1(t_1), \gamma_2(t_2)) \leq d_c(\gamma_1(t_1), \tilde{\gamma}_2(t_2)), \quad \text{where } d_c \text{ denotes the distance function in } M^2(c).
\]

Let \(p, q \in M \). The excess function \(e_{pq}(x) \) is defined by \(e_{pq}(x) = d(p, x) + d(q, x) - d(p, q) \).

Lemma 3 ([5]) Let \((M, g) \) be complete with \(\text{Ric}_M \geq -(n - 1) \lambda \) and \(\text{conj}_M \geq c_0 > 0 \). There is a constant \(C_0 = C(n, c_0) > 0 \) such that if \(\sigma_i : [0, r_i] \to M \) are minimizing geodesics from \(p \) with \(\rho = \max(r_1, r_2) \leq \frac{1}{c_0} \), then

\[
d(\sigma_1(r_1), \sigma_2(r_2)) \leq e^{C_0 \rho^{\frac{1}{2}}} |r_1 r_2|,
\]

where \(r_i = \frac{\partial}{\partial t}(0), i = 1, 2 \).

Let \((M, g) \) be as in Lemma 3. Let \(\rho \leq \frac{1}{c_0} \), and \(\sigma_1, \sigma_2 : [0, \rho] \to M \) be minimizing geodesics from \(x \) to \(p^*, q^* \). Put \(\theta := \angle(\sigma_1'(0), \sigma_2'(0)) \). By Lemma 3, we have

\[
d(p^*, q^*) \leq 2 \rho e^{C_0 \rho^{\frac{1}{2}}} [1 - \sin^2(\frac{\theta - \theta}{2})]^{\frac{1}{2}}.
\]

thus

\[
\sin^2(\frac{\pi - \theta}{2}) \leq 2 [e^{C_0 \rho^{\frac{1}{2}}} - \frac{d(p^*, q^*)}{2 \rho}] = 2 [e^{C_0 \rho^{\frac{1}{2}}} - 1 + \frac{e_{p^* q^*}(x)}{2 \rho}].
\]

Let \(\varepsilon = \frac{1}{2} \sin \frac{\pi}{2} \). Take \(\rho = \rho(n, c_0) \leq \frac{1}{4} c_0 \) such that \(e^{C_0 \rho^{\frac{1}{2}}} \leq 1 + \varepsilon^2 \). Suppose that \(e_{p^* q^*}(x) \leq 2 \varepsilon^2 \rho \). Then we have

\[
\sin^2(\frac{\pi - \theta}{2}) \leq (2 \varepsilon)^2 = \sin^2 \frac{\pi}{8}.
\]

This implies that \(\theta \geq \frac{7}{4} \pi \).

Let \(X, Y \) be the metric spaces. A map \(f : X \to Y \) is by definition a Hausdorff \(\delta \)-approximation if

\[
|d_X(x_1, x_2) - d_Y(f(x_1), f(x_2))| < \delta, \forall x_1, x_2 \in X,
\]

\[
B(f(X), \delta) \supset Y,
\]
where \(B(f(X), \delta) \) denotes the \(\varepsilon \)-neighbourhood of the subset \(f(X) \) in \(Y \). The Hausdorff distance \(d_H(X, Y) \) between \(X \) and \(Y \) is defined by the infimum of \(\delta \) such that there exist Hausdorff \(\delta \)-approximation maps \(f : X \to Y, g : Y \to X \).

For noncompact metric spaces we say that a pointed sequence \((X_i, x_i) \) converges to \((X, x) \) in the pointed Gromov-Hausdorff topology if, for all \(\gamma > 0 \), the sequence \(X_i \cap B_\gamma(x_i) \) converges to \(X \cap B_\gamma(x) \) in the Gromov-Hausdorff topology.

Proof of Theorem 1. By Lemma 1, there is a sequence \(\{x_i\} \subset M \), \((M, x_i) \) converges to \((\mathbb{R}^n, 0) \) in the pointed Gromov-Hausdorff topology. Which means that for all \(R > 0 \), the sequence \(B(x_i, R) \) converges to \(V(0, R) \) in the Gromov-Hausdorff topology, where \(V(0, R) \) denotes the ball around 0 with radius \(R \) in \(\mathbb{R}^n \). Thus by definition of Gromov-Hausdorff distance, we have \(d_{G_H}(B(x_i, R), V(0, R)) < \varepsilon_i \to 0 \). Then there exists map \(f : B(x_i, R) \to V(0, R) \) such that

1. \(f(x_i) = 0 \).
2. \(f(B(x_i, R)) \) is \(\varepsilon_i \)-dense in \(V(0, R) \).
3. \(\forall x, y \in B(x_i, R), |d_M(x, y) - d_{G_H}(f(x), f(y))| < \varepsilon_i \).

For any fixed point \(p \) in \(B(x_i, R) \), if \(d(x_i, p) < c(M) \), then \(p \) is not a critical point of \(x_i \). If \(d(x_i, p) \geq c(M) \). Let \(p' = f(p) \in V(0, R) \). \(\gamma \) be the ray connecting 0 and \(p' \), \(q' = \gamma \cap S(0, R) \), where \(S(0, R) \) denotes the sphere with radius \(R \) around 0. By (2), there exists \(q'' \in V(0, R), d_{G_H}(q', q'') < \varepsilon \), and \(q'' = f(q) \) for some \(q \in B(x_i, R) \). By (3), it is easy to see that

\[
d_M(x_i, p) + d_M(p, q) - d_M(x_i, q) < 5\varepsilon_i.
\]

Thus let \(\sigma_1, \sigma_2 \) be minimizing geodesics from \(p \) to \(x_i, q \). \(\theta = \angle(\sigma_1'(0), \sigma_2'(0)) \), \(\rho \leq \frac{\pi}{4} \), \(p^* = \sigma_1(p), q^* = \sigma_2(p) \).

By the triangle inequality, \(e_{p^*q^*}(\rho) \leq \varepsilon_i \), thus if \(5\varepsilon_i \leq 2e^2p \), then \(\theta \geq \frac{3\pi}{4} \), and \(p \) is not a critical point of \(x_i \). Thus \(c_{x_i} \geq R \). Since we can let \(R \) arbitrarily large, we have sup \(p \in M \) \(C_p = \infty \). Q.E.D.

Corollary 1. Let \(M \) be a complete and noncompact manifold, \(Ric_M \geq 0, \alpha_M > 0, \) \(inj_M \geq i_0 > 0 \). Then sup \(p \in M \) \(C_p = \infty \).

Proof. Since \(conj_M \geq i_0 > 0 \) and \(c(M) \geq i_0 > 0 \) can both be deduced from \(inj_M \geq i_0 > 0 \), by Theorem 1, Corollary 1 is obvious. Q.E.D.

Proof of Theorem 2. From the proof of theorem 1, we know that for any \(R > 0 \), \(p \in B(x_i, R) \), if \(d(x_i, p) \leq c(M) \), then \(p \) is not a critical point of \(x_i \). If \(d(x_i, p) \geq c(M) \), there exists \(q \in B(x_i, R) \), such that

\[
d_M(x_i, p) + d_M(p, q) - d_M(x_i, q) < 5\varepsilon_i.
\]

Let \(\sigma_1, \sigma_2, \sigma_3 \) be minimizing geodesics from \(p \) to \(x_i, p \) to \(q \) and \(q \) to \(x_i \). \(r_i = L(\sigma_i) \) be the length of \(\sigma_i, i = 1, 2, 3 \), \(\beta = \angle(\sigma_1'(0), \sigma_2'(0)) \). By lemma 2, we have

\[
\cos \beta \leq \frac{\cosh \frac{r_2}{2} \cosh \frac{r_3}{2} - \cosh \frac{r_1}{2}}{\sinh \frac{r_2}{2} \sinh \frac{r_3}{2} + \frac{1}{2} \cosh \frac{r_2}{2} \cosh \frac{r_3}{2} - \cosh \frac{r_1}{2}}.
\]
If $\gamma_3 = \gamma_1 + \gamma_2$, by the inequality above, $\cos \beta < 0$.
Since $0 \leq r_1 + r_2 - r_3 \leq 5\varepsilon_i$, $r_1 \geq c(M) > 0$, thus if ε_i is sufficiently small, $\cos \beta < 0$, $\beta > \frac{\pi}{2}$, and p is not a critical point of x_i. So $C_{x_i} \geq R$. Since R can be arbitrarily large, $\sup_{p \in M} C_p = \infty$. Q.E.D.

Lemma 4 ([6]) Let M be a complete and noncompact Riemannian manifold, $\text{Ric}_M \geq 0$, $K_M \geq -k^2$, $\alpha_M > \frac{1}{2}$. Then $e(M) \geq \iota_0 > 0$.

Corollary 2 Let M be a complete and noncompact Riemannian manifold, $\text{Ric}_M \geq 0$, $\alpha_M > \frac{1}{2}$, $K_M \geq -k^2$. Then $\sup_{p \in M} C_p = \infty$.

Proof. Combining theorem 2 and lemma 4, corollary is obvious. Q.E.D.

§3 Proof of the theorem 3

Proof. From the proof of lemma 2.1 in [7], we know that there exists a constant $\delta > 0$, if $x, p \in M$, $r_p(x) = d(p, x)$ satisfies $\frac{r_p(x)}{r_p(p)} < \delta$, then x is not critical point of p.

Now for $e(M) = \sup_{p \in M} e(p) < \infty$, $\varepsilon_p(x) \leq e(p) \leq e(M) < \infty$, for any $p, x \in M$, thus if $r_p(x) > \left(\frac{e(M)}{\delta}\right)^{\frac{2}{k}}$, then x is not a critical point of p. By Corollary 2, $\sup_{p \in M} C_p = \infty$. There exists $p \in M$, $C_p > \left(\frac{e(M)}{\delta}\right)^{\frac{2}{k}}$, thus p has not critical point other than p and M is diffeomorphic to \mathbb{R}^n. Q.E.D.

参考文献