Justify your answers to all problems.

Notation: \(\mathbb{R} \) is the real line, \(\mathbb{C} \) is the complex plane and \(D(P, r) \subset \mathbb{C} \) is the disk of radius \(r \) centered at point \(P \).

1. Suppose \(\{f_n\}_{n=1}^{\infty} \subset L^2(\mathbb{R}) \) is a sequence that converges to 0 in the \(L^2 \) norm; in other words,
 \[
 ||f_n||_{L^2(\mathbb{R})} = \left(\int_{-\infty}^{\infty} |f_n|^2 \, dx \right)^{1/2} \to 0.
 \]
 Prove that there exists a subsequence \(\{f_{n_k}\} \) such that \(f_{n_k} \to 0 \) almost everywhere.

2. Determine whether the following statements are true and false. If true, provide a proof. If false, prove a counter example.

 (a) If \(f(x) \) is a increasing, continuous function on the interval \([0, 1]\) such that \(f(0) = 0 \) and \(f(1) = 1 \), then there exists a set \(E \subset [0, 1] \) of positive measure such that \(f'(x) > 0 \).

 (b) If \(f(x) \) is a strictly increasing, absolutely continuous function on the interval \([0, 1]\) with \(f(0) = 0 \) and \(f(1) = 1 \), then the set \(f^{-1}(E) \cap \{x \in [0, 1] : f'(x) > 0\} \) is measurable for any measurable set \(E \subset [0, 1] \).

3. Let \(\{\varphi_k\}_{k=1}^{\infty} \) be an orthonormal basis for \(L^2(\mathbb{R}^d) \) and define \(\varphi_{k,j}(x, y) = \varphi_k(x)\varphi_j(y) \). Prove that \(\{\varphi_{k,j}\}_{k,j=1}^{\infty} \) is an orthonormal basis of \(L^2(\mathbb{R}^d \times \mathbb{R}^d) \).

4. Let \(U \subset \mathbb{C} \) be an open set containing \(D(P, r) \). Prove that if \(f : U \to \mathbb{C} \) is a holomorphic function such that \(f \) is nowhere zero on \(\partial D(P, r) \) and \(g : U \to \mathbb{C} \) is a holomorphic function sufficiently uniformly close to \(f \) on \(\partial D(P, r) \), then the number of zeros of \(f \) in \(D(P, r) \) equals the number of zeros of \(g \) in \(D(P, r) \) (counting multiplicity).

5. If \(f = u + iv \) is an entire function with the property that \(u(z) \leq 0 \) for all \(z \in \mathbb{C} \), what can you say about \(f \)?

6. If \(D(0, 1) \to \mathbb{C} \) is a function such that \(f^2 \) and \(f^3 \) are both holomorphic, prove \(f \) is holomorphic.

7. Compute the integral
 \[
 \int_0^{\infty} \frac{(\log x)^2}{1 + x^2} \, dx.
 \]