1. Compute the following limits.

(a) \(\lim_{x \to 0} \frac{e^x - 1}{\sin 2x} \).

\[
\lim_{x \to 0} \frac{e^x - 1}{\sin 2x} = \lim_{x \to 0} \frac{e^x}{2 \cos 2x} = \frac{e^0}{2 \cos 0} = \frac{1}{2}.
\]

(We used L’Hôpital in the first step since limit was of form 0/0.)

(b) \(\lim_{x \to 0^+} x^x \).

\[
\ln \left(\lim_{x \to 0^+} x^x \right) = \lim_{x \to 0^+} \ln(x^x) = \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x}.
\]

Now this is of the form \(\infty/\infty \) so apply L’Hôpital:

\[
= \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = -\lim_{x \to 0} x = 0.
\]

Thus, \(\lim_{x \to 0^+} x^x = \exp(0) = 1 \).

(c) \(\lim_{x \to 1} \frac{1 - x + \ln x}{1 + \cos \pi x} \).

This is of the form 0/0 so apply L’Hôpital:

\[
\lim_{x \to 1} \frac{1 - x + \ln x}{1 + \cos \pi x} = \lim_{x \to 1} \frac{-1 + 1/x}{-\pi \sin \pi x}.
\]

The above is again of the form 0/0 so L’Hôpital once more gives:

\[
= \lim_{x \to 1} \frac{-1/x^2}{-\pi^2 \cos \pi x} = \frac{-1/1^2}{-\pi^2 \cos \pi} = \frac{1}{\pi^2}.
\]
2. Consider the function \(f(x) = \frac{x^3 - 4}{x^2} \).

(a) Compute \(f'(x) \) and analyze the regions where \(f(x) \) is increasing or decreasing.
First observe that the original function \(f(x) \) is defined whenever \(x \neq 0 \). Now, \(f'(x) = 1 + 8/x^3 \) is positive if \(x < -2 \) or \(x > 0 \) and negative only when \(-2 < x < 0\) so \(f(x) \) is increasing in the two former intervals and decreasing in the latter.

(b) Compute \(f''(x) \) and analyze the concavity of \(f(x) \).
\(f''(x) = -24/x^4 \) which is negative whenever it is defined, so the graph of \(f(x) \) is concave down.

(c) Find all asymptotes (horizontal, vertical or oblique) to the graph of \(y = f(x) \).
\(x = 0 \) is the only point where \(f(x) \) is undefined and \(f(x) \) is otherwise continuous, so looking at the one-sided limits:
\[
\lim_{x \to 0^\pm} \frac{x^3 - 4}{x^2} = -\infty
\]
(both one-sided limits are \(-\infty\)), hence \(x = 0 \) is a vertical asymptote approached by the graph of \(y = f(x) \) “in the direction of \(-\infty\)” from both sides. Also, noting that \(f(x) \) is a rational function with numerator of degree 1 more than the denominator, we separate the polynomial part:
\[
f(x) = \frac{x^3 - 4}{x^2} = x - \frac{4}{x^2},
\]
and conclude that the diagonal line \(y = x \) is an oblique asymptote to the graph. Consequently, there are no horizontal asymptotes.

(d) Sketch the graph of \(y = f(x) \).
3. A wooden beam with rectangular cross section must be cut from a log with a circular cross section of diameter 2 feet. The strength of the beam is the product of its width w with the square of its height h. Find the optimal way to cut the beam from the log to maximize its resistance (aka, find the height and width of the most resistant beam.)

The resistance R of the beam is $R = wh^2$ where, by Pythagoras’ Theorem, $h^2 + w^2 = 2^2 = 4$, thus $h^2 = 4 - w^2$ and $R = w(4 - w^2)$ for $0 \leq w \leq 2$. Note that R is a continuous function defined on a closed interval so it must attain its maximum by the Extreme Value Theorem. At the endpoints $w = 0, 2$ we have $R = 0$. Checking for critical points we find $dR/dw = 4 - 3w^2$ is always well-defined, and vanishes only when $w = \sqrt{4/3}$. In this case we clearly have $R > 0$, so the value of $w = \sqrt{4/3}$ is necessarily the one attaining the maximal resistance. In this case, $h = \sqrt{4 - w^2} = \sqrt{4 - (4/3)} = \sqrt{8/3}$.

Figure 1: Graph of $y = x - 4/x^2$ showing the oblique asymptote $y = x$.

Figure 2: Cross section of the log and the beam to be cut from it.
4. Find the area of the “boomerang” contained between the graphs of $f(x) = \frac{x}{3\pi}(3\pi - x)$ and $g(x) = -\sin x$ for $0 \leq x \leq 3\pi$.

Figure 3: The “boomerang” $0 \leq x \leq 3\pi, g(x) \leq y \leq f(x)$.

Area $= \int_0^{3\pi} \left[\frac{x}{3\pi}(3\pi - x) - (-\sin x) \right] dx = \int_0^{3\pi} \left(x - \frac{x^2}{3\pi} + \sin x \right) dx$

$= \left[\frac{x^2}{2} - \frac{x^3}{9\pi} - \cos x \right]_0^{3\pi} = \frac{9}{2} \pi^2 - \frac{27\pi^3}{9\pi} + 2$

$= \frac{3}{2} \pi^2 + 2$.

4