1. p.28 #10.

Let G be the group of rigid motions of a cube in \mathbb{R}^3. Label any two adjacent vertices \mathcal{O} and \mathcal{O}'. Then there are 8 choices of vertices to map \mathcal{O} to. Given this vertex, there are then 3 choices for \mathcal{O}', since it must go to an adjacent vertex. Thus, there are $8 \times 3 = 24$ elements in G.

2. p.33 #5

$|G| = \text{lcm}(5, 2, 3) = 30$

3. p.33 #11

Let σ be an m-cycle.

(\Rightarrow) Then σ is an m-cycle $\Rightarrow |\sigma| = m \Rightarrow |\sigma| = m$ for $i \in \mathbb{Z}/m\mathbb{Z}$ and $(m, i) = 1$

(\Leftarrow) View σ as a function where σ takes $a \mapsto a + i \bmod m$

Since $|\sigma| = m$ in $\mathbb{Z}/m\mathbb{Z}$, the number of times you need to apply σ to return to a is $|\sigma| = m$

$\therefore \sigma = (1a, 2a, \ldots, ma)$. Relabel to get $\sigma = (1, 2, \ldots, m)$ so σ is an m-cycle.

4. p.35 #11

Let $H(F) = \{ (a, 0) \in GL_3(F) \}$. Let $X = (a, b, c)$, $Y = (d, e, f) \in H(F)$

a) $XY = (a + d, a + e + b, c + f) \in H(F)$ is closed w.r.t. \times

b) $X^{-1} = (-d + b, -c + a, a + c) \in H(F)$

c) I'll let you work out it is associative. Since $H(F)$ is closed for each of a, b, c, $|H(F)| = 1F^3$

d) $H(2F) = \{ (1, 1), (1, i), (i, 1), (i, i), (1, 1), (1, i), (i, 1), (i, i) \}$ (\neq D_4)

Orders: 1 2 2 2 2 4

5) If $X \in H(2F)$, $X \neq I$, $|X| = n$, then $X^n = I$.

Let $X = (a, b, c)$. Then $X^n = (1, na + bnt + fac)$ when $F(a, c) \in \mathbb{R}$, $s, t, s + t = 0$

Equating entries give $na = 0$, $nc = 0 \Rightarrow a, c = 0 \Rightarrow bn = 0 \Rightarrow b = 0$

$\therefore I = X \Rightarrow X = I$.
4. Let \(G \) be a group. Define \(\psi : G \rightarrow G \) by \(x \mapsto x^{-1} \).

Then \(\psi(xy) = \psi(x) \psi(y) \mapsto (xy)^{-1} = x^{-1}y^{-1} \mapsto y^{-1}x^{-1} = \psi(x^{-1}) \psi(y^{-1}) \mapsto 1 = x^{-1}y^{-1}xy \mapsto xy = yx \).

\(\therefore \) \(G \) is abelian.

5. Let \(|G| = 4 \).

By exhausting all possible group operations, it is easy to see \(G \) must be abelian.

\(\therefore \) by Fundamental Theorem of Finitely Generated Abelian Groups (Problem 3, p. 158), \(G \cong \mathbb{Z}_4 \) or \(\mathbb{Z}_2 \times \mathbb{Z}_2 \).

6. Define \(\phi : \mathbb{Z}/n \mathbb{Z} \rightarrow \mathbb{Z}/n \mathbb{Z} \) by \(e^\frac{2\pi k}{n} \mapsto k \mod n \).

This is clearly well-defined and surjective.

\(\phi \) is easily seen to be a homomorphism:

\(\phi \) is injective since if \(e^\frac{2\pi k}{n} = e^\frac{2\pi l}{n} \), \(k \equiv l \mod n \), i.e., \(k = n \ell \) for \(\ell \in \mathbb{Z} \).

So \(e^\frac{2\pi k}{n} = e^\frac{2\pi n\ell}{n} = (e^\frac{2\pi}{n})^\ell = 1^\ell = 1 \).

\(\therefore \) \(\phi \) is isomorphic.

7. Let \(p \) be prime. Let \(|G| = p, x \in G, xy \neq 1 \).

By Lagrange's Theorem, \(|x||y| = 1 \).

\(|x||y| = 1 \) or \(p \).

\(\therefore \) Every group of order \(p \) is cyclic, and \(G \cong \mathbb{Z}/p \mathbb{Z} \).

8. The element \((0,1)\) has order 2 in \(\mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z} \), whereas no element in \(\mathbb{Z} \) has order 2.

9. Let \(p \) be prime, \(a \in \mathbb{Z} \).

\(\phi(p) = p-1 \) by (Problem 16, p. 135).

Since \(a^{p-1} = 1 \), multiply both sides by \(a \) to get \(a^p = a \) in \(\mathbb{Z}/p \mathbb{Z} \).

(PS - this is Fermat's Little Theorem: \(a^{n-1} \equiv 1 \mod n \) for \((a,n) = 1 \).)

10. Let \(G = \mathbb{Z}/2^k \mathbb{Z} \) for \(k \geq 3 \).

1. Let \((2^k, n) = 1 \). Then \(n \in G \) by Problem 4, pg. 10.

2. \(|G| = \phi(2^k) = 2^{k-1} \) by Problem 16, p. 135.
2. \((2^{k+1} + 1)(2^{k+1} + 1) = 2^{2k+2} + 2 \cdot 2^k + 1 \equiv 1 \mod 2^k\)

\((2^k - 1)(2^k - 1) = (2^k)^2 - 2 \cdot 2^k + 1 \equiv 1 \mod 2^k\)

4. \(\mathbb{Z}/2m\mathbb{Z}\) cyclic of order 2m. Clearly m e \(\mathbb{Z}/2m\mathbb{Z}\) is the only element of order 2 so \(\frac{m}{2}\) element.

11. Label the vertices of a rectangle \(\frac{a}{b} \cdots \frac{c}{d}\). Then the only rigid motions are \(\{1, (13)(24), (12)(23), (14)(23)\}\)

which is isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_2\) (The Klein 4-group)

12. Let \(\mathbb{Q}/\mathbb{Z} = (\mathbb{Q}, +) / \sim\) where \(\frac{a}{b} \sim \frac{c}{d} \rightarrow \frac{a}{b} - \frac{c}{d} \in \mathbb{Z}\)

Show \(\mathbb{Q}/\mathbb{Z}\) a group: For \(\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}/\mathbb{Z}\), \(\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \in \mathbb{Q}/\mathbb{Z}\) : closed

Assoc. follows from associativity of \((\mathbb{Q}, +)\)

Identity is \(0 = \frac{0}{1}\)

Inverse of \(\frac{p}{q} = -\frac{p}{q} \in \mathbb{Q}/\mathbb{Z}\) : Group

1. For \(\tau \in \mathbb{Q}/\mathbb{Z}\), let \(\tau = \frac{p}{q}\) and WLOG, say \(\frac{p}{q} \geq 0\).

If \(\frac{p}{q} \in [0, 1]\) done, so assume not.

Then \(\frac{p}{q} - \lfloor \frac{p}{q} \rfloor \in [0, 1)\), where \(\lfloor \frac{p}{q} \rfloor\) is the floor function. Call this representation \(\tau \in [0, 1)\)

Then \(\frac{p}{q} \sim \tau'\) since \(\frac{q}{q} - \tau' = \lfloor \frac{p}{q} \rfloor \in \mathbb{Z}\).

2. Let \(n \in \mathbb{N}\). Then \(\frac{1}{n} \in \mathbb{Q}/\mathbb{Z}\), and \(\langle \frac{1}{n} \rangle = \{\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, ..., \frac{n-1}{n}\}\), so \(|\langle \frac{1}{n} \rangle| = n\)

by part 1), \(\exists!\) copy of \(\mathbb{Z}/n\mathbb{Z}\) in \(\mathbb{Q}/\mathbb{Z}\)

2. Any \(\phi \in \text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}/\mathbb{Z})\) is completely determined where \(I\) gets mapped to \(\frac{1}{n}\) for any \(n \in \mathbb{N}\) gives all homomorphisms from \(\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Q}/\mathbb{Z}\)

\(\therefore \text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}\)

\(\text{card } |\text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}/\mathbb{Z})| = \text{card } |\mathbb{Z}/n\mathbb{Z}| = \text{card } |\mathbb{N}| = \text{countable}\)

4. Any \(\phi \in \text{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Z})\) must take an element \(\frac{1}{n}\) to 0, since every element in \(\mathbb{Q}/\mathbb{Z}\) has finite order.

and 0 is the only element of \(\mathbb{Z}\) with finite order.

\(\therefore \text{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}) = 0\)

\(\text{card } |\{0\}| = 1\)

Note: see remark in ex 2 p 387 on Pontrjagin Dual Group