Abstract Algebra - HW #5 Solutions

1. p. 85 #3

Let A be abelian, $B \triangleleft A$. Then $ab, bB \in A/B$, $ab \cdot bB = abB = b(abB) = bB \cdot aB$. B/B is abelian.

For example, of non-abelian group G containing proper normal subgroup N s.t. G/N is abelian, let $G = Q_8$, $N = \langle i \rangle$.

Then $Q_8/\langle i \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, which is abelian.

2. p. 86 #6

Let $\phi: \mathbb{R}^+ \to \{\pm 1\}$ def by $x \mapsto \frac{x}{|x|}$.

ϕ is a homomorphism since $\phi(xy) = \frac{xy}{|xy|} = \frac{x}{|x|} \cdot \frac{y}{|y|} = \phi(x) \cdot \phi(y)$.

Fibers of ϕ are $\phi^{-1}(1) = \{x \in \mathbb{R}^+ | x > 0\}$ and $\phi^{-1}(-1) = \{x \in \mathbb{R}^+ | x < 0\}$.

3. p. 87 #20

Let $G = \mathbb{Z}/24\mathbb{Z}$, $G = \langle 6 \rangle$.

By 3rd Iso Thm, $G \cong (\mathbb{Z}/24\mathbb{Z})/(\mathbb{Z}/12\mathbb{Z}) \cong \mathbb{Z}/12\mathbb{Z}$, which gives part c).

a) trivially follows and use the formula that $|G| = 161 = \frac{|G|}{(6, a)} = \frac{12}{(6, a)}$.

4. p. 101 #1

I'm done this in section! Let $\psi: \text{GL}_n(F_q) \to \mathbb{F}_q^\times$ be homomorphism defined by $A \mapsto \det A$.

Then $\ker \psi = \text{SL}_n(F_q)$, so by 1st Iso Thm, $\text{GL}_n(F_q)/\text{SL}_n(F_q) \cong \mathbb{F}_q^\times$ since ψ is surjective.

Thus $|\text{GL}_n(F_q)/\text{SL}_n(F_q)| = |\mathbb{F}_q^\times| = q - 1$.

5. See Cor 9 p. 125

4. Let G group, $H, K \subseteq G$ s.t. $|G/H| = |G:/K = 2$, and $H \triangledown K = \{e\}$.

The lattice of G is then $G/H \quad \text{and by the 2nd Iso Thm, } |H| = |K| = 2$.

By example 2 pg 71, both $H \subseteq G$ and $K \subseteq G$, so by Thm 9 p. 121, $G = H \times K$ so $1H = 1H_1 / 1H_1 / 2 = K \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
5. Define a map \(G \to \langle [i : j], \ [i : j^2] \rangle \) defined by \(i \mapsto [i : j], j \mapsto [i : j^2] \).
Recalling that a presentation for \(G = \langle i, j \mid i^2, j^2, i^3 = j^3 = 1, i^2j = ji \rangle \) it is an easy
verification that \(\psi \) is an isomorphism. Then \(G \) is the only element of order 2,
which is also the center, and since every subgroup of \(G \) has order 2, they are normal (with
the exception of the center, which is clearly normal).

6. Draw lattice:

```
\[
\begin{array}{c}
\text{gen} \\
\downarrow \\
G
\end{array}
\begin{array}{c}
\downarrow \\
H
\end{array}
\begin{array}{c}
\downarrow \\
\text{HK}
\end{array}
\begin{array}{c}
\downarrow \\
H \cap K
\end{array}
\begin{array}{c}
\downarrow \\
H \cap K
\end{array}
\begin{array}{c}
\downarrow \\
1
\end{array}
\]
\]
\]
\]
```

Assume \(K \neq H \). Then \(H \leq HK \) (proper containment)

\[\exists 2^{nd} \text{ Iso Thm., } K : \text{H} = \frac{p}{q} \]

\[|G : H| = |G : \text{H} \cap H| = p, \text{ so since } N = H K,
\]

\[|H : \text{H} \cap H| = 1 \rightarrow |H : H| = p \text{ and } |G : H K| = 1\]

\[G = H K\]

7. Look at map \(\pi : H \to \mathbb{Z}/n \) defined by \(h \mapsto hN \)

Then \(|\pi(H)| = \frac{|H|}{|H \cap N|} \) since \(\pi(H) \) is a quotient of \(H \)

and \(|\pi(H)| = \frac{|H|}{|H \cap N|} \) by Lagrange.

\[\therefore \text{since } (|H|, |G : H|) = 1, \ |\pi(H)| = 1 \therefore H \text{ gets mapped to the identity coset, so } H \leq N\]

8. \((aH)^n = a^n \cdot H = H \therefore aH \leq H\]

9. Let \(\varphi : A \times B \to A / c \times B / d \) be natural quotient map. Then \(\varphi \) is surjective and \(ker \varphi = (c \times d) \)

\[\therefore \text{by 1st Iso Thm., } A \times B / (c \times d) \cong A / c \times B / d\]

10. 1) \[G \text{ is finite, } [G : K] = \frac{|G|}{|K|}, \text{ so since } \frac{|G|}{|K|} = \frac{|H|}{|K|} = \frac{|G : H|}{[G : H] [H : K]}\]

2) If \([G : H] [H : K] \) is finite, say \([G : H] = p, [H : K] = q, \) then have cosets \(g H, g_2 H, \ldots, g_q H \) which partition \(G \)
and \(H \cap K, \ldots, K \) (cosets of \(K \) in \(H \)) partition \(H \). Then let \(g \in g H = \bigcup_{j=1}^{p} g_j H \), so \(g \in g_j H \).

\[|G : K| \text{ is finite}\]

If \(|G : K| = n < \infty, g_1 K, g_2 K, \ldots, g_n K \) partition \(G \). Pick cosets in \(H \), say \(g_1, g_2, \ldots, g_n K \leq H \)

Then there are finitely many \((n - q)\) cosets \(g H, H \). \[|G : H| = 1 \therefore |G : H| / |K| \text{ will be finite as well.}\]
Abstract Algebra HW #5

1. equality proved if \([G:K]=\infty\) or \([G:H][H:K]=\infty\)

Now, if all indices are finite, say \(n=[G:K]\) and \([G:H][H:K]=p^aq^b\).

considering everything mod \(K\), \(G/K=\{gK\mid g\in G\}\) is finite, so by part a)

\[|G/K| = |G:H| \cdot |H/K| = p^a \cdot q^b\]

so by the 3rd Iso Thm, \([G:K] = [G:H][H:K]\) as desired.

11. Let \(G = \{z \in \mathbb{C} \mid |z|=1\}\) be \(\mathbb{C}\) prime.

1. \(\zeta : G \to G\) def by \(z \mapsto z^p\) is surjective since given any \(z = e^{i\theta} \in G\), consider \(e^{i\theta} \in G\).

Then \(\zeta(e^{i\theta}) = e^{i\theta^p} = z\) as desired.

2. Then by first iso thm, \(G/\ker \zeta \simeq G\)