201 Linear Algebra, Practice Midterm2

Duration: 50 mins

1. \[A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix} \]

Find the matrix of the transformation \(T(\vec{x}) = A\vec{x} \) with respect to the basis \(\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \} \).

2. \(T(M) = M \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \) defines a linear transformation on the space of \(2 \times 2 \) matrices; \(T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2} \).

 (a) Write down the matrix for this transformation in terms of the standard basis for \(\mathbb{R}^{2 \times 2} \)

 (b) Find the Kernel and Image of \(T \).

 (c) Find the matrix of \(T \) with respect to the basis \(B = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \right\} \).

 (d) How is the matrix in part (c) related to the matrix in part (a)?

3. Find an orthonormal basis for the subspace of \(\mathbb{R}^4 \) consisting of all those vectors that are perpendicular to \(\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} \).

4. Find the least-squares solution \(\vec{x}^* \) of the system \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \vec{x} = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} \).

5. TRUE or FALSE. Justify your answer.

 (a) All linear transformations from \(P_3 \) to \(\mathbb{R}^{2 \times 2} \) are isomorphisms

 (b) If the matrix of a linear transformation \(T : V \to V \) with respect to some basis is invertible, then \(T \) is invertible.

 (c) If the \(2 \times 2 \) matrix \(R \) represents the reflection about a line in \(\mathbb{R}^2 \), then there is an invertible \(2 \times 2 \) matrix \(S \) such that \(R = S^{-1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} S \).

 (d) If a matrix \(A \) is similar to \(B \), and \(A \) is orthogonal, then so is \(B \).

 (e) If the matrix \(A \) is orthogonal then \(A^3 \) is orthogonal.