Practice Midterm Exam 1

1. Find all solutions \(y = y(x) \) to the following initial value problems (remember to include domain):

 (a) (10 points)
 \[
 \begin{cases}
 y' = (1 + y^2) x \\
 y(0) = 1
 \end{cases}
 \]

 (b) (10 points)
 \[
 \begin{cases}
 y' = y^{2/3} \\
 y(0) = 0
 \end{cases}
 \]

2. Put the following matrices in canonical form (i.e., Jordan normal form).

 (a) (10 points)
 \[
 A_1 = \begin{pmatrix} -1 & 1 \\ -9 & 5 \end{pmatrix}
 \]

 (b) (10 points)
 \[
 A_2 = \begin{pmatrix} 1 & 2 \\ -4 & -3 \end{pmatrix}
 \]

3. Determine a \(2 \times 2 \) linear system of ODEs which has the following properties:

 (a) (10 points) The phase portrait contains a stable line \(y = 3x \) and an unstable line \(x = 0 \).

 (b) (10 points) The phase portrait contains the ellipse \(5x^2 - 4xy + y^2 = 20 \).

4. (20 points) Find the general solution to the following \(3 \times 3 \) linear system:

 \[
 \mathbf{Y}' = \begin{pmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{pmatrix} \mathbf{Y}
 \]

5. Consider the following one-parameter family of autonomous ODEs

 \[
 y' = F_a(y) = \frac{y}{1 + y^2} - ay
 \]

 (a) (10 points) Draw the bifurcation diagram for this family of ODEs.

 (b) (10 points) Show that there is a value \(a_0 \) so that if \(a_- < a_0 \) and \(a_+ > a_0 \), then the systems \(y' = F_{a_-}(y) \) and \(y' = F_{a_+}(y) \) are not topologically conjugate (Hint: Do not try and solve the ODEs explicitly).