Consider the autonomous \(\dot{y} = f(a, y) \) where

\[\text{"a" is a parameter (an unknown constant).} \]

The number and classification of equilibrium may depend on the value of "a".

\[\dot{y} = ay - y^2 = y/(a-y^2) \]

Here, for \(a < 0 \) and \(a > 0 \) the number of equilibrium are different (also the type).

\[a = -1 < 0 \]

\[a = 1 > 0 \]

Here \(f(1, y) = y/(1-y^2) = y/(1-y)(1+y) \)

and equilibrium exist at \(y = -1, 0, 1 \). \(y(0) \equiv 0 \) is unstable here.

It is asymptotically stable.
We can study how the parameter affects equilibrium via a bifurcation diagram: a graph of equilibrium in relation to parameter value in the ay-plane for $y' = f(x, y)$.

Properties:

- Each vertical slice here is the phase line of $y' = f(x, y)$ for that value of ε.

- As ε varies, equilibrium track out curves of fixed pts. found by solving $f(x, y) = 0$.

- Special values of ε where the number of equilibria and/or the stability change are called bifurcation values of ε.

- Here, $\varepsilon = \infty$ correspond to the solutions to $f(x, y) = y'(a-y^2) = 0$, or to $y = 0$, $x = y^2$, or $y = \pm \sqrt{a}$.
• Here, the only bifurcation value of a is $a = 0$.

• Here we use solid lines for all equilibria, and vertical arrows to denote stability. Red use solid for asymptotically stable curves, and dotted for unstable curves.

• This kind of bifurcation is called a pitchfork bifurcation... why?

ex. $\dot{y} = a - y^2$

\begin{align*}
\text{Lines of equilibria:} \\
\text{solve } a = y^2 \\
y = \pm \sqrt{a}, y = -\sqrt{a} \\
\text{only for } a > 0
\end{align*}

Called a saddle-node or crotch bifurcation
example Basic model of a laser (simple)

\[\dot{n} = (\alpha N_0 - k) n - \alpha n^2 \]

This models a basic simple laser, where

\(n(t) \) = # of photons at time \(t \)

\(N_0, k, \alpha \) are positive constants.

We study how the eqn is affected by \(N_0 \geq 0 \)

There are equilibrium at

\[n (\alpha N_0 - k - \alpha n) = 0 \]

necessarily \(n = 0 \)

\(\Lambda = N_0 - \frac{k}{\alpha} \)

\[\text{(i) when } N_0 < \frac{k}{\alpha}, \]

\((\alpha N_0 - k) < 0, \)

so \(\dot{n} < 0 \).

\(n(t) = 0 \) is a sink.

\[\text{(ii) when } N_0 > \frac{k}{\alpha}, \alpha N_0 - k > 0 \Rightarrow \text{ for small } n, \]

\(\alpha N_0 - k - \alpha n > 0, \) or \(N_0 - \frac{k}{\alpha} - n > 0, \) so

for small \(n, \dot{n} > 0 \), etc.
Change tack

Recall for any equation involving \(x, y \),

- we can bring all terms to one side of the equation and create an equivalent equation \(y(x, y) = 0 \)

for \(y(x, y) \) a function of 2 variables. Then the curve in the \(x,y \)-plane satisfying this equation is called the 0-level set of \(y \).

ex. \(y^2 = 1 - x^2 \). We view this eqn as the 0-level set of \(y \) and \(y(x, y) = x^2 + y^2 - 1 = 0 \).

- We can view \(y \) as an implicit function of \(x \).

In either case, the graph of the original equation (or the \(y(x, y) = 0 \)) is a curve in \(x,y \)-plane that in general will not look like a function.
We can calculate the tangent lines to this graph via differentiation in either interpretation.

\[x^2 + xy^2 = 4, \text{ or } \Psi(x, y) = 0, \quad \Psi(x, y) = x^2 + xy^2 - 4 \]

Implicit Diff
\[
\frac{d}{dx} (x^2 + xy^2 = 4) \Rightarrow 2x + y^2 + 2xy \frac{dy}{dx} = 0
\]

Calc III
\[
\frac{dy}{dx} (x, y) = \frac{\frac{dy}{dx}}{\frac{dx}{dy}} = \frac{\frac{dy}{dx}}{\frac{dx}{dy}} y'
\]

when we think of \(y \) as an implicit func of \(x \).

Suppose a first-order ODE is of the form
\[
M(x, y) + N(x, y) y' = 0 \quad (*)
\]

Then (*) and (*) are the same under the condition that there exists a function \(\Psi(x, y) \), where

1. \(\frac{d\Psi}{dx}(x, y) = M(x, y) \)
2. \(\frac{d\Psi}{dy}(x, y) = N(x, y) \)

So that
\[
M(x, y) + N(x, y) y' = 0 = \frac{d\Psi}{dx} = \frac{d\Psi}{dx} + \frac{d\Psi}{dy} y'
\]
If this is the case, then the ODE \(y' = f(x) \) can be rewritten as \(\frac{dy}{dx} = 0 \), or
\[y(x, y) = C, \text{ a constant}. \]
Thus, solving the ODE at least implicitly.

Existence.

Notice that \(2x + y^2 + 2xy y' = 0 \) is of the form \(M(x, y) + N(x, y) y' = 0 \) with
\[M(x, y) = 2x + y^2 \]
\[N(x, y) = 2xy. \]

But we also can see that the function \(y(x, y) = x^2 + y^2 \) has the partials
\[\frac{dy}{dx}(x, y) = 2x + y^2 \quad \frac{dy}{dy}(x, y) = 2xy. \]

Hence, \(2x + y^2 + 2xy y' = 0 \) can be written
\[\frac{dy}{dx} = 0 = \frac{1}{x^2 + 2xy^2} \]

16. We assume that \(y \) is an implicit function of \(x \).
Here we can (assuming \(y \) is an implicit function of \(x \)) integrate \(\frac{dy}{dx} (x, y) = 0 \) w.r.t \(x \) to get

\[\int \frac{dy}{dx} (x, y(x)) \, dx = \int_0^x \, dx \]

\(y(x_0) = x^2 + xy^2 = C \)

This is the general implicit solution to

\[2x + y^2 + 2xy' = 0 \]

Q: How do we know such a \(y(x_0) \) may exist and if so how to find it?

Calc III: Let \(y(x, y) \) have continuous partial derivatives in some open region. Then

\[\frac{\partial}{\partial x} \left(\frac{\partial y}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial y}{\partial x} \right) \]

i.e. mixed partials are equal.