WEEK 4 - HOMEWORK

I. Let G be a group, N a normal subgroup of G, and π the canonical surjection

$$\pi : G \longrightarrow G/N.$$

Assuming that N is abelian, let us define

$$\phi : G/N \longrightarrow \text{Aut}(N),$$

by $\phi(\pi(x))(n) := xnx^{-1}$, for all $x \in G$ and $n \in N$.

1. Show that ϕ is a well-defined function and that ϕ is in fact a group morphism.
2. Show that, if there exists a subgroup H of G such that the restriction $\pi \mid_H$ of π to H gives a group isomorphism

$$\pi \mid_H : H \longrightarrow G/N,$$

then the group G is isomorphic to the internal semidirect product of N and H as well as the (external) semidirect product of N and G/N with respect to ϕ.

II. (1) Show that, if a group G admits a cyclic tower ending with the trivial subgroup, then G is finitely generated. (i.e. there exists a finite subset S of G, such that $G = \langle s \mid s \in S \rangle$.)

2. Give an example of an abelian group which does not admit a cyclic tower ending with the trivial subgroup.

3. Give an example of a group which admits an abelian tower that cannot be refined to a cyclic tower of subgroups.

III. (1) Compute the commutator of S_4.
(2) Compute the commutator of S_n, for $n \geq 5$.
(3) Compute the commutator of A_n, for $n \geq 5$.

IV. Show that a group G is solvable if and only if there exists a natural number n such that the n-th iterated commutator $G^{(n)}$ of G is trivial.