Answers for the Lagrange multiplier quiz

Suppose \(g(x, y) = 3x^3 + 4y^3 \) and let \(f(x, y) = x^2 + y^2 \).

1. Find \(\nabla f \) and \(\nabla g \).

[Answer: \(\nabla f = (2x, 2y) \), and \(\nabla g = (9x^2, 12y^2) \).]

2. Find the points on the level curve \(g(x, y) = 12 \) which satisfy the equation

\[
\nabla g = \lambda \nabla f
\]

for some nonzero \(\lambda \), and calculate \(f \) in those cases. [Don’t bother to calculate \(\lambda \) unless you have to. HINT: \(18^2 = 324 \), \(18^3 = 5832 \).]

[Answer: The equation asserts that \((9x^2, 12y^2) = \lambda (2x, 2y) \), or in other words that

\[
9x^2 = 2\lambda x, \quad 12y^2 = 2\lambda y
\]

Now \(x \) and \(y \) can’t both be zero, since \(3x^3 + 4y^3 = 12 \). If \(x = 0 \) then \(4y^3 = 12 \), so \(y = 3^{1/3} \) and

\[
f(0, 3^{1/3}) = 3^{2/3}.
\]

Similarly, if \(y = 0 \) then \(3x^3 = 12 \), so \(x = 4^{1/3} \) and

\[
f(0, 4^{1/3}) = 4^{2/3}.
\]

If \(x \) and \(y \) are both nonzero, then

\[
x = \frac{2}{9} \lambda, \quad y = \frac{1}{6} \lambda,
\]

so

\[
3 \left(\frac{2}{9} \lambda \right)^3 + 4 \left(\frac{1}{6} \lambda \right)^3 \lambda^3 = \frac{25}{486} \lambda^3 = 12,
\]

so \(\lambda^3 = \frac{5832}{25} \). On the other hand for these values of \(x \) and \(y \) we have

\[
f(x, y) = \left(\frac{2}{9} \right)^2 \lambda^2 + \left(\frac{1}{6} \right)^2 \lambda^2 = \frac{25}{324} \lambda^2;
\]

plugging in the value for \(\lambda \) derived above, we get

\[
f = \frac{25}{324} \left(\frac{5832}{25} \right)^{2/3} = 25^{1/3} = 5^{2/3}.
\]