1.1

19. Consider the linear system

\[
\begin{align*}
 x + y - z &= -2 \\
 3x - 5y + 13z &= 18 \\
 x - 2y + 5z &= k
\end{align*}
\]

where \(k \) is an arbitrary number.

(a) For which values of \(k \) does the system have one or infinitely many solutions?

To answer this, we turn the system into an augmented matrix and put it in reduced row echelon form:

\[
\begin{pmatrix}
 1 & 1 & -1 & -2 \\
 3 & -5 & 13 & 18 \\
 1 & -2 & 5 & k
\end{pmatrix}
\]

\(\rightarrow \)

\[
\begin{pmatrix}
 1 & 1 & -1 & -2 \\
 0 & -8 & 14 & 24 \\
 0 & -3 & 6 & k+2
\end{pmatrix}
\]

\(\rightarrow \)

\[
\begin{pmatrix}
 1 & 0 & 1 & 1 \\
 0 & 1 & -2 & -3 \\
 0 & 0 & 0 & k-7
\end{pmatrix}
\]

The matrix is now in rref. There are no solutions if \(k-7 \neq 0 \). Thus, there will be at least one solution if and only if \(k=7 \).

(b) If \(k=7 \), how many solutions does the system have?

If \(k=7 \), the matrix looks like

\[
\begin{pmatrix}
 1 & 0 & 1 & 1 \\
 0 & 1 & -2 & -3 \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]

There are two pivot variables and one free variable, so there are infinitely many solutions when \(k=7 \).
(c) Find all solutions when \(k = 7 \).

The second row gives the equation \(y - 2z = -3 \).

The first row gives the equation \(x + z = 1 \).

Setting \(z = t \) to be our free variable,

we have \(x = 1 - t \) and \(y = 2 + 3t \).

so \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 - t \\ 2 + 3t \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}t \) gives all solutions as \(t \) varies.

20. For which values of \(a, b, c, d, \) and \(e \) is the following matrix in reduced row-echelon form?

\[
A = \begin{pmatrix}
0 & 0 & 2 & 1 & b \\
0 & 0 & 0 & c & d \\
0 & 0 & e & 0 & 0
\end{pmatrix}
\]

\(e \) must be zero since the row above it has only zeros to the left. \(a \) must be 1 since otherwise the first row would not have a leading 1. \(c \) must be zero since if it were a leading 1, the 1 above it would have to be zero. \(d \) can be 0 or 1.

If \(d = 0 \), \(b \) can be anything.

If \(d = 1 \), it is a leading 1, so \(b \) must be zero.

So the two possibilities are \((a, b, c, d, e) = (1, b, 0, 0, 0)\) for any \(b \)

and \((1, 0, 0, 1, 0)\).
36. Find all vectors in \(\mathbb{R}^3 \) perpendicular to \(\left(\begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right) \). Draw a sketch.

If a vector \(\left(\begin{array}{c} x \\ y \\ z \end{array} \right) \) is perpendicular to \(\left(\begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right) \), then it satisfies the equation \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} = 0 \)

That is, \(x + 3y - z = 0 \)

or, \(x + 3y - z = 0 \) must be true.

Then \(x = -3y + z \), and so \(x \) is completely determined by \(y \) and \(z \) (our free variables).

If we set \(y = s \) and \(z = t \), we have

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3s + t \\ s \\ t \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} s + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} t.
\]

Thus, all vectors perpendicular to \(\left(\begin{array}{c} 1 \\ 3 \\ -1 \end{array} \right) \) have this form. Geometrically, we can think of the collection

\[
\left\{ \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} s + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} t \left| \begin{array}{c} s, t \in \mathbb{R} \end{array} \right. \right\}
\]

as a plane spanned by the two vectors \(\begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \).
6. Let $\vec{v}_1, \vec{v}_2, \vec{v}_3$ be the vectors in \mathbb{R}^2 drawn below.

How many solutions does the system $x \vec{v}_1 + y \vec{v}_2 = \vec{v}_3$ have?

Geometrically, any multiple $x \vec{v}_1$ will point in the same direction as \vec{v}_1, and similarly for any multiple $y \vec{v}_2$.

Since \vec{v}_1 and \vec{v}_2 point the same direction, the sum $x \vec{v}_1 + y \vec{v}_2$ will still point the same direction as \vec{v}_1 and \vec{v}_2:

In particular, $x \vec{v}_1 + y \vec{v}_2$ cannot point the same direction as \vec{v}_3, so we cannot have $x \vec{v}_1 + y \vec{v}_2 = \vec{v}_3$ for any choice of x and y. So there are no solutions.
25. Let A be a 4×4 matrix and let \vec{b} and \vec{c} be two vectors in \mathbb{R}^4. We are told that the system $A\vec{x} = \vec{b}$ is inconsistent. What can we say about the number of solutions of the system $A\vec{x} = \vec{c}$?

Since the system is inconsistent, the rref of A must have a row of zeros

$$\text{rref}(A) = \begin{pmatrix}
\text{---} \\
0 & 0 & 0 & 0
\end{pmatrix}$$

and if $\vec{b} = \begin{pmatrix} b_1 \\
b_2 \\
b_3 \\
b_4
\end{pmatrix}$

becomes

$$\vec{b}' = \begin{pmatrix} b_1' \\
b_2' \\
b_3' \\
b_4'
\end{pmatrix}$$

after row reduction.

Then the augmented matrix must look like

$$\begin{pmatrix}
\text{---} \\
| b_1' \\
\text{---} \\
0 & 0 & 0 & 0 \end{pmatrix}$$

with $b_4' \neq 0$ since the system is inconsistent.

Now let's replace \vec{b} with $\vec{c} = \begin{pmatrix} c_1 \\
c_2 \\
c_3 \\
c_4
\end{pmatrix}$ in the above and say \vec{c} becomes

$$\vec{c}' = \begin{pmatrix} c_1' \\
c_2' \\
c_3' \\
c_4'
\end{pmatrix}$$

after row reduction.
(where \(\text{rref}(A) \) still stays the same).

$$
\begin{bmatrix}
\vdots \\
\vdots \\
0 & 0 & 0 & 0 & c_4' \\
\end{bmatrix}
$$

If \(c_4' \neq 0 \), the system \(A \mathbf{x} = \mathbf{c} \) will remain inconsistent. If \(c_4' = 0 \), the bottom row will yield the uninformative equation \(0 = 0 \). So we will really have three equations in four variables. Thus, a unique solution is impossible. So \(A \mathbf{x} = \mathbf{c} \) will have either infinitely many or no solutions.