Math 202 Exam 1, Friday March 4, 2011.
Show all work in a clear and concise manner to get maximum credit. Circle your answers.

1. (15 points) Find all points on the curve \(\vec{c}(t) = < t, t^2, \frac{1}{3}t^3 > \) where the tangent line to the curve is parallel to the plane \(x + y + z = 0 \).

2a. (10 points) Find the area of the triangle with vertices \((1,0,0), (0,0,-2), (-1,-1,0)\).

2b. (10 points). Use Lagrange multipliers to find the point on the plane \(x - 2y - 2z = 1 \) that is closest to the point \((0,1,0)\).

3. (15 points) Let \(\hat{v} = \hat{i}, \hat{w} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} \). Suppose that \(f(x, y) \) is a differentiable function at \((0,0)\) with directional derivatives
 \[D_{\hat{v}}f(0,0) = 2, \quad D_{\hat{w}}f(0,0) = 3. \]

 Find the directional derivative of \(f \) at \((0,0)\) in the direction of \(3\hat{i} + 4\hat{j} \).
 Hint: Note that \(\hat{v} \) and \(\hat{w} \) are not orthogonal.

4. (15 points) Let \(f(x, y, z) = xyz \). At the point \(P = (1,2,3) \), in which unit direction is \(f \) decreasing the fastest? How far would you have to move in that direction so that \(f \) is approximately (linear approximation) 5.8?

5. (15 points) Let \(F(x, y, z) = x^3 + y^3 + z^3 + 6xyz + 4 \) and suppose that in a small neighborhood of the point \(P = (1, -1, 2) \) on the level surface \(\{(x, y, z) : F(x, y, z) = 0\} \), \(z \) can be implicitly expressed as a function of \(x \) and \(y \), i.e \(z = f(x, y) \).
 a. (8 points) Calculate \(f_x, f_y \) at \(P \) using the Chain rule.
 b. (7 points) Now suppose \(x = 2s - t, y = s - 2t^2. \) Again using the Chain rule, calculate \(\frac{\partial z}{\partial t}(1,1) \) when \(z = 2 \).

6. (20 points) Find the critical points of \(f(x, y) = x^3 + x^2y - y^2 - 4y \) and use the second derivative test to classify them (relative max, relative min, saddle, no information).