Strictly monotone functions and the inverse function theorem

We have seen that for a monotone function \(f : (a, b) \rightarrow \mathbb{R} \), the left and right hand limits
\[
y_0^- = \lim_{x \to x_0^-} f(x) \quad \text{and} \quad y_0^+ = \lim_{x \to x_0^+} f(x)
\]
both exist for all \(x_0 \in (a, b) \). This implies any discontinuity of \(f \) is a jump and there are at most a countable number. Obviously if \(f(x) \) is continuous on \(I = [a, b] \) then the image \(f(I) \) is an interval \([f(a), f(b)]\) (a point if \(f \) is a constant). However the converse is also true if \(f \) is monotone.

Theorem 0.1. Let \(f : I \rightarrow \mathbb{R} \) be monotone increasing with range an interval. Then \(f \) is continuous on \((a,b)\)

Proof. Suppose for contradiction that \(f \) has a jump at \(x_0 \). Then at least one of the intervals \((y_0^-, f(x_0))\) or \((f(x_0), y_0^+)\), must be nonempty. Pick one and call it \(J \) and note that \(J \subset (y_0^-, y_0^+)\) so the image of \(f \) is not an interval.

Theorem 0.2. Let \(f \) be continuous and one to one on an interval \((a,b)\), then \(f \) is either strictly decreasing or strictly increasing.

Proof. Let \(a < x_1 < x_2 < b \). Then either \(f(x_2) > f(x_1) \) or \(f(x_2) < f(x_1) \) Suppose the first possibility; then we claim \(f \) is strictly increasing on \((a,b)\). Let \(a < x'_1 < x'_2 < b \) be any other ordered two points in the interval. Set \(x(t) = tx'_1 + (1-t)x_1, y(t) = tx'_2 + (1-t)x_2 \). Then \(a < x(t) < y(t) < b \) for \(0 \leq t \leq 1 \). Set \(g(t) = f(y(t)) - f(x(t)) \). Then \(g \) is the composition of continuous functions so is continuous on \([0,1]\). Also \(g(0) \neq 0 \) since \(f \) is one to one so \(g(t) \) cannot change sign by the Intermediate value theorem. Since \(g(0) = f(x_2) - f(x_1) > 0 \), \(g(t) > 0 \) and hence \(g(1) = f(x'_2) - f(x'_1) > 0 \). The second possibility follows by a similar argument.

Theorem 0.3. If \(f \) is continuous and one to one on an interval, then \(f^{-1} \) is also continuous.

Proof. By the previous theorem, \(f \) is either strictly increasing or strictly decreasing. Suppose the former and let \(x_0 \) be in the interval with \(y_0 = f(x_0) \). We must show \(\lim_{y \to y_0} f^{-1}(y) = x_0 \).

Let \(\varepsilon > 0 \) be given. If \(x_0 - \varepsilon < x_0 < x_0 + \varepsilon \), then \(f(x_0 - \varepsilon) < f(x_0) < f(x_0 + \varepsilon) \). Choose
\[
\delta = \min \left(f(x_0) - f(x_0 - \varepsilon), f(x_0 + \varepsilon) - f(x_0) \right).
\]
Then \(f(x_0 - \varepsilon) < f(x_0) - \delta \) and \(f(x_0) + \delta < f(x_0 + \varepsilon) \). Hence if \(f(x_0) - \delta < y < f(x_0) + \delta \), then \(f(x_0 - \varepsilon) < y < f(x_0 + \varepsilon) \). Since \(f \) is strictly increasing, so is \(f^{-1} \) and therefore \(x_0 - \varepsilon < f^{-1}(y) < x_0 + \varepsilon \). We have shown \(|f^{-1}(y) - f^{-1}(y_0)| < \varepsilon \) if \(|y - y_0| < \delta \) which is what we needed to show.

\[1\]
Theorem 0.4. (Inverse function) Let f be a strictly monotone continuous function on $[a, b]$ with f differentiable at $x_0 \in (a, b)$ and $f'(x_0) \neq 0$. Then f^{-1} exists and is continuous and strictly monotone. Moreover, f^{-1} is differentiable at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Proof. Since f is strictly monotone and continuous, f is one to one onto its range which is the interval $J = [f(a), f(b)]$. The inverse function $g = f^{-1}$ is also strictly increasing mapping J onto I so g is continuous by Theorem 1. Let $y_0 = f(x_0)$. Then

$$\lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{g(y) - g(y_0)}{f(g(y)) - f(g(y_0))} = \lim_{y \to y_0} \frac{1}{f(g(y)) - f(g(y_0))}.$$

Note that the denominators are not zero. Since f is differentiable at x_0 and g is continuous (so as $y \to y_0$, $x \to x_0$)

$$\frac{f(g(y)) - f(g(y_0))}{g(y) - g(y_0)} = f'(x_0) + o(1) \quad \text{as} \quad y \to y_0.$$

Therefore,

$$g'(y_0) = \frac{1}{f'(x_0)}.$$

\square