MATH 3210-2. Decimal expansion of real numbers.

October 11, 2000

In this handout I describe decimal expansion of the real numbers. We start by discussing real numbers in the interval \([0, 10)\).

A *decimal sequence* is a sequence \((x_n)\) of rational numbers satisfying the following property:

\[x_0 \in \mathbb{Z} \cap [0, 10) \text{ and } x_{n+1} = x_n + a_{n+1}10^{-(n+1)} \text{ where } a_{n+1} \in \mathbb{Z} \cap [0, 10). \]

In other words,

\[x_n = \sum_{i=0}^{n} a_i \cdot 10^{-i} \]

where \(a_i \in \mathbb{Z} \cap [0, 10)\) for each \(i \in \mathbb{N}\). It is clear that this sequence is increasing.

Let \(x\) be a real number which belongs to the interval \([0, 10)\). The *decimal expansion* of \(x\), is a decimal sequence \((x_n)\) which converges to \(x\).

Theorem 1. (1) Each decimal sequence \((x_n)\) converges to a real number \(x \in [0, 10]\). The limit of this sequence belongs to \([0, 10)\) unless \(a_i = 9\) for all \(i \in \mathbb{N}\).

(2) Each real number \(x \in [0, 10)\) has a decimal expansion.

Proof. (1) Since the decimal sequence \((x_n)\) is increasing we have

\[\lim_{n \to \infty} x_n = x = \sup\{x_n | n \in \mathbb{N}\}. \]

Let us check that this supremum belongs to \([0, 10]\).

\[x_n = \sum_{i=0}^{n} a_i \cdot 10^{-i} \leq \sum_{i=0}^{n} 9 \cdot 10^{-i} = 9 \cdot \sum_{i=0}^{n} 0.1^i = 9 \cdot \frac{1 - 0.1^{n+1}}{1 - 0.1} = 10(1 - 0.1^{n+1}) < 10. \]

Hence 10 is an upper bound for \(\{x_n | n \in \mathbb{N}\}\) which implies that \(x = \sup\{x_n | n \in \mathbb{N}\} \leq 10\). On the other hand, \(x_1 \geq 0\), hence \(x = \sup\{x_n | n \in \mathbb{N}\} \geq x_1 \geq 0\). Thus \(x = \lim_{n \to \infty} x_n \in [0, 10]\).
Suppose that \(a_i < 9 \) for some \(i = k \in \mathbb{N} \). Then for each \(n \geq k \),
\[
\sum_{i=0}^{n} a_i \cdot 10^{-i} \leq \sum_{i=0}^{n} 9 \cdot 10^{-i} + (a_k - 9)10^{-k} = 10(1 - 0.1^{n+1}) - (9 - a_k)10^{-k} \leq 10 - (9 - a_k)10^{-k}.
\]

Note that \(\delta = (9 - a_k)10^{-k} > 0 \). Thus \(x \leq 10 - (9 - a_k)10^{-k} = 10 - \delta < 10 \). Hence \(x \neq 10 \) which means that \(x \in [0, 10) \).

This concludes the proof of (1).

Proof of (2). Given \(x \in [0, 10) \) we will construct \(x_n \) and \(a_n \in \{0, \ldots, 9\} \) so that \(x_n \leq x < x_n + 10^{-n} \) and \(x_{n+1} = x_n + a_{n+1}10^{-(n+1)} \), which means that
\[
x_n = \sum_{i=0}^{n} a_i \cdot 10^{-i}.
\]

For this construction we use the induction on \(n \). Let \(a_0 = x_0 = [x] \), which is the largest integer not exceeding \(x \).

Since \(x \in [0, 10) \), \(a_0 \in \mathbb{Z} \cap [0, 10) \). It is clear that \(x_0 \leq x < x_0 + 1 \).

Step of the induction. Suppose that we already have \(x_n \) so that \(x_n \leq x < x_n + 10^{-n} \). The interval \([x_n, x_n + 10^{-n}]\) has the length \(10^{-n} \). Let \(x_{n+1} \in [x_n, x_n + 10^{-n}] \) be the largest number of the form \(x_n + a10^{-(n+1)} \) which does not exceed \(x \) (where \(a \in \{0, \ldots, 9\} \)). Such maximum exists since there are only ten numbers of such form. Then
\[
x_{n+1} = x_n + a_{n+1}10^{-(n+1)}
\]
and
\[
x_{n+1} = x_n + a_{n+1}10^{-(n+1)} \leq x < x_n + (a_{n+1}+1)10^{-(n+1)} = x_{n+1} + 10^{-(n+1)}.
\]

Thus \(x_{n+1} = x_n + a_{n+1}10^{-(n+1)} \) and \(x \in [x_{n+1}, x_{n+1} + 10^{-(n+1)}] \). Therefore we are done (by induction) constructing \((x_n) \). Now let’s check that \((x_n) \) converges to \(x \). The sequence \((x_n) \) is increasing and is bounded (from above) by \(x \), hence it has a limit \(y \in \mathbb{R} \). Since
\[
x_n \leq x < x_n + 10^{-n}
\]
then (by the squeeze lemma)
\[
y = \lim_{n \to \infty} x_n \leq x \leq \lim_{n \to \infty} (x_n + 10^{-n}) = y + 0
\]
(since \(\lim_{n \to \infty} 10^{-n} = 0 \)). Thus \(y = x \) and we proved that \(\lim_{n \to \infty} x_n = x \). Therefore \((x_n) \) is a decimal expansion of \(x \). This proves the second assertion of Theorem. \(\square \)

Remark 2. You can notice that the proof is very similar to the proof of the Bolzano-Weierstrass theorem (on existence of convergent subsequences in bounded sequences of real numbers).

Theorem 3. Suppose that \((x_n), (y_n) \) are two distinct decimal sequences:
\[
x_n = \sum_{i=0}^{n} a_i \cdot 10^{-i}, \quad y_n = \sum_{i=0}^{n} b_i \cdot 10^{-i}
\]

2
so that
\[\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n. \]
Then there exists \(k \in \mathbb{N} \) so that (after interchanging if necessary the symbols \(x \) and \(y \), \(a \) and \(b \)) we have:

(i) \(a_i = b_i \) for all \(i < k \).

(ii) \(b_k + 1 = a_k \) and \(a_j = 0, b_j = 9 \) for all \(j > k + 1 \).

In other words, the sequences \((a_n), (b_n)\) look like:

\[a_0, \ldots, a_{k-1}, a_k, 0, \ldots, 0, \ldots \]

\[a_0, \ldots, a_{k-1}, a_k - 1, 9, \ldots, 9, \ldots \]

respectively.

Proof. Since the sequences \((x_n), (y_n)\) are distinct, there exists a number \(k \in \mathbb{N} \) equal to \(\inf \{ i \in \mathbb{N} | a_i \neq b_i \} \). Then \(a_i = b_i \) for \(i < k \). I will assume that \(a_k > b_k \) (otherwise interchange the symbols \(x \) and \(y \), \(a \) and \(b \)). Suppose that \(a_k > b_k + 1 \). Then for each \(n \geq k + 1 \)

\[x_n = \sum_{i=0}^{n} a_i \cdot 10^{-i} \geq \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + a_k 10^{-k}, \]

\[y_n = \sum_{i=0}^{n} b_i \cdot 10^{-i} \leq \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + b_k 10^{-k} + \sum_{i=k+1}^{n} 9 \cdot 10^{-i} \leq \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + b_k 10^{-k} + 10^{-k} = \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + (b_k + 1) 10^{-k}. \]

Thus

\[\lim_{n \to \infty} x_n \geq \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + a_k 10^{-k} > \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + (b_k + 1) 10^{-k} \geq \lim_{n \to \infty} y_n. \]

This contradicts the assumption that \((x_n)\) and \((y_n)\) have the same limit.

Thus \(b_k = a_k - 1 \). Suppose that \(a_m \neq 0 \) for some \(m > k \). Then by the same argument as above, for all \(n \geq m \) we have

\[x_n = \sum_{i=0}^{n} a_i \cdot 10^{-i} \geq \sum_{i=0}^{k} a_i \cdot 10^{-i} + a_m 10^{-m} = x_k + a_m 10^{-m}, \]

\[y_n = \sum_{i=0}^{n} b_i \cdot 10^{-i} \leq \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + (a_k - 1) 10^{-k} + \sum_{i=k+1}^{n} 9 \cdot 10^{-i} \leq \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + (a_k - 1) 10^{-k} + 10^{-k} = \sum_{i=0}^{k} a_i \cdot 10^{-i} = x_k. \]

Hence \(\lim_{n \to \infty} y_n \leq x_k < x_k + a_m 10^{-m} \leq \lim_{n \to \infty} x_n \) which contradicts the assumption that \((x_n)\) and \((y_n)\) have the same limit.
Thus \(a_i = 0 \) for all \(i > k \). This means that
\[
x = x_k = \sum_{i=0}^{k} a_i \cdot 10^{-i}.
\]

Assume that \(b_s < 9 \) for some \(s \geq k + 1 \). Then (similarly to the proof of Theorem 1) for each \(n \geq s \),
\[
y_n = \sum_{i=0}^{n} b_i \cdot 10^{-i} \leq \sum_{i=0}^{k} b_i \cdot 10^{-i} + \sum_{i=k+1}^{n} 9 \cdot 10^{-i} + (b_s - 9)10^{-s}
\]
\[
\leq \sum_{i=0}^{k-1} a_i \cdot 10^{-i} + (a_k - 1)10^{-k} + 10^{-k} - (9 - b_s)10^{-s} =
\]
\[
x_k - 10^{-k} - (9 - b_s)10^{-s} = x - (9 - b_s)10^{-s} = x - \delta,
\]
where \(\delta = (9 - b_s)10^{-s} > 0 \). Thus \(\lim_{n \to \infty} y_n \leq x - \delta < x \). Contradiction. Thus all the assertions of Theorem are proven. \(\square \)

We proved that each decimal sequence converges to a real number in \([0, 10)\), each real number in \([0, 10)\) has a decimal expansion and this expansion is “essentially” unique: the only distinct decimal expansions of the same number have the form:

\[
a_0, \ldots, a_{k-1}, a_k, 0, \ldots, 0, \ldots
\]
\[
a_0, \ldots, a_{k-1}, a_k - 1, 0, \ldots, 0, \ldots
\]

How to define decimal expansions for the real numbers which do not belong to the interval \([0, 10)\)? Given any positive \(x \in \mathbb{R} \) there exists \(m \in \mathbb{N} \) so that \(10^{m-1} > x \). Thus \(0 < y = 10^{-m}x < 10 \). Take the decimal expansion \((y_n)\) for \(y \) and define \((x_n = 10^m y_n)\) to be the decimal expansion of \(x \). If \(x < 0 \) then take \(z = -x \). The number \(z \) has decimal expansion \((z_n)\), then define \((x_n = -z_n)\) to be the decimal expansion of \(x \). I leave it for you to verify that the decimal expansion defined this way does not depend on \(m \).

It follows from the Limit Theorem 2.2 that the limit of the decimal expansion \((x_n)\) of \(x \) defined this way converges to \(x \) and the sequence \((x_n)\) has the property similar to the property of the decimal sequences. Namely, for some \(m \in \mathbb{N} \) and \(\epsilon \in \{1, -1\}:\)
\[
x_0 = \epsilon \cdot a_0 10^m
\]
and
\[
x_{n+1} = x_n + \epsilon \cdot a_{n+1} 10^{m-(n+1)},
\]
where \(a_i \in \{0, \ldots, 9\} \). As in the case of the decimal sequences described before, every such generalized decimal sequence converges to a real number and the decimal expansion of any real number is “essentially” unique.