Problem Set 3: Due November 16

1. Solve using the method of characteristics:
 a. $x \ u_x + y \ u_y = 2u, \ u(x, 1) = g(x)$.
 b. $u \ u_x + u_y = 1, \ u(x, x) = \frac{1}{2} x$.
 c. $x \ u_x + 2y \ u_y = 3u, \ u(x, y, 0) = g(x, y)$.

2. Let $w(t)$ satisfy $w'' = -f(t)$, on (a, b), $w(a) = w(b) = 0$.
 a. Show that w is given by

 \[w(t) = \frac{1}{b-a} \{(b-t) \int_a^t (s-a)f(s) \, ds + (t-a) \int_t^b (b-s)f(s) \, ds \} . \]

 b. Deduce that the solution of the eigenvalue problem $u'' + \lambda u = 0$, on (a, b), $u(a) = u(b) = 0$ may be found as a solution of the integral equation eigenvalue problem

 \[\mu u(t) = \int_a^b K(s,t)u(s) \, ds , \]

 where $\mu = \frac{1}{\lambda}$ and the kernel $K(s,t)$ is given by

 \[K(s,t) = \frac{1}{b-a} \left\{ \begin{array}{ll}
 (s-a)(b-t) & \text{if } a \le s \le t \\
 (t-a)(b-s) & \text{if } t \le s \le b
 \end{array} \right. \]

3. Let D be a domain in the plane and consider the admissible class A of (say) C^1 functions in D which vanish on the boundary. Define the Rayleigh quotient

 \[I(u) = \frac{\int_D |\nabla u|^2 \, dxdy}{\int_D u^2 \, dxdy} . \]

 a. Suppose that $u(x,y)$ is a smooth minimizer of I. Show that u satisfies the Euler-Lagrange equation

 \[\Delta u + \lambda u = 0 , \]

 where $\lambda = I(u)$. The constant λ is called the principle eigenvalue of the Laplace operator (with Dirichlet boundary conditions) and u is the corresponding eigenfunction. It is in fact true that u cannot change sign. Can you suggest a variational reason for this?
 b. When D is a rectangle, explicitly compute λ and $u(x,y)$. Hint: Use separation of variables and solve the Euler-Lagrange equations.