UNSTABLE SPLITTINGS FOR REAL SPECTRA

NITU KITCHLOO AND W. STEPHEN WILSON

Abstract. We show that the unstable splittings of the spaces in the Omega spectra representing \(BP, BP^{(n)}\) and \(E(n)\) from [Wil75] may be obtained for the real analogs of these spectra using techniques similar to those in [BW01]. Explicit calculations for \(ER(2)\) are given.

March 12, 2012

1. Introduction

We are concerned with the \(\mathbb{Z}/(2)\)-equivariant (think complex conjugation) spaces (and their homotopy fixed points) associated with the \(p=2\) spectra \(BP, BP^{(n)}\), and \(E(n)\). Recall that the homotopy of \(BP\) is:

\[
BP_\ast \cong \mathbb{Z}(2)[v_1, v_2, \ldots] \quad \text{with degree } v_n = 2(2^n - 1).
\]

Likewise,

\[
BP^{(n)}_\ast \cong \mathbb{Z}(2)[v_1, v_2, \ldots, v_n] \quad \text{and} \quad E(n)_\ast \cong v_n^{-1}BP^{(n)}_\ast.
\]

In [Wil75], the homotopy type of the spaces in the Omega spectrum for \(BP\) was determined. A crucial step was showing that:

\[
BP^{(n)}_{2(2^n - 1)} \cong BP^{(n)}_{4(2^n - 1)} \times BP^{(n-1)}_{2(2^n - 1)}.
\]

For example,

\[
BP_0 \cong \prod_{k \geq 0} BP^{(k)}_{2(2^k - 1)}.
\]

It follows that, for \(m < 2^n\),

\[
E(n)_{2m} \cong BP^{(n)}_{2m+2(2^n - 1)} \times \prod_{k \geq 0} BP^{(n-1)}_{2m-2k(2^n - 1)}
\]

where \(\prod\) denotes the restricted product given by the colimit of finite products.

These results were all reproven using unstable operations in [BJW95], but the easy direct proof was finally found in [BW01]. This last approach carries over to the bigraded equivariant case, and we obtain:

Theorem 1.2. There is an equivariant splitting of spaces:

\[
\mathbb{BP}^{(n)}_{(2^n - 1)(1+\alpha)} \cong \mathbb{BP}^{(n)}_{2(2^n - 1)(1+\alpha)} \times \mathbb{BP}^{(n-1)}_{(2^n - 1)(1+\alpha)}
\]

Theorem 1.3. There is an equivariant decomposition of \(H\)-spaces:

\[
\mathbb{BP}_0 \cong \prod_{k \geq 0} \mathbb{BP}^{(k)}_{(2^k - 1)(1+\alpha)}
\]

Taking the homotopy fixed points, this gives a decomposition of the zeroth space in the Omega spectrum for \(BPR\), the real \(BP\).
Theorem 1.4. Let $m < 2^n$, then there is an equivariant splitting:

$$\mathbb{E}(n)_{m}(1+\alpha) \cong \mathbb{BP}(n)_{(2^n-1+m)(1+\alpha)} \times \prod_{k \geq 0} \mathbb{BP}(n-1)_{(m-k(2^n-1))(1+\alpha)}.$$

In the case of $n = 2$, with period 6, of Equation 1.1, we get

\begin{equation}
E(2)_{0} \cong BP(2)_{6} \times \prod_{k \geq 0} (\mathbb{Z}(2) \times BU(2)).
\end{equation}

In [Dav84], Don Davis proves a major non-immersion theorem for real projective spaces using the even part of the $\mathbb{BP}(2)$ cohomology. All of his spaces are v_2-torsion free, so this is equivalent to using the theory $E(2)^{2*}(-)$. Since his new information does not come from complex K-theory, it must be contained in the classifying spaces $BP(2)^{2k}$, for $k = 1, 2, 3$.

Let $ER(n)$ be the homotopy fixed point spectrum associated with $\mathbb{E}(n)$. Where $E(n)$ has periodicity $2(2^n-1)$, $ER(n)$ has periodicity $2^{n+2}(2^n-1)$ ([KW07a]). In particular, $ER(2)$ is 48 periodic.

$ER(2)^{16*}(-)$ was used in [KW08a] and [KW08b] to improve some of Davis’s non-immersions slightly. The result analogous to Equation 1.5 from the splitting of Theorem 1.4 gives for some space $Y0$:

$$ER(2)_{0} \cong Y0 \times \prod_{k \geq 0} (\mathbb{Z}(2) \times BO(2)).$$

The space $Y0$ has lowest homotopy in degree 3. We see below that it splits as the product of two spaces. It is beyond what we do in this paper, but this split is as the product of a space $Y0'$ with lowest homotopy degree 6, and the space that you get by killing 2 times the generator of $H^4(\text{BSpin})$.

We have one last splitting:

Theorem 1.6. Let $m < 2^n$, there is an equivariant equivalence

$$\Omega^{2^{n+2}(2^n-1)} \mathbb{BP}(n)_{(2^n-2+m)(1+\alpha)} \cong \mathbb{BP}(n)_{(2^n-1+m)(1+\alpha)} \times \prod_{0 \leq k \leq 2^n-2} \mathbb{BP}(n-1)_{(m-k(2^n-1))(1+\alpha)}.$$

Running through this from $m = 1$ to $m = 2^n - 1$ goes through a multiple of the complete periodicity.

In the case of the homotopy fixed points for the $n = 2$ case with 48 periodicity, the theorem gives us spaces $Y1$ and $Y2$ such that:

$$\Omega^{16}Y0 \cong Y1 \times BO \times (\mathbb{Z}(2) \times BO) \times (\mathbb{Z}(2) \times BO)$$

where $Y1$ has lowest degree element in degree 4.

$$\Omega^{16}Y1 \cong Y2 \times (\mathbb{Z}(2) \times BO) \times (\mathbb{Z}(2) \times BO)$$

where the lowest degree element in $Y2$ is in degree 2 and

$$Y2 \cong Y2' \times BSO$$

with lowest degree homotopy in $Y2'$ in degree 5.

$$\Omega^{16}Y2 \cong Y0 \times (\mathbb{Z}(2) \times BO) \times (\mathbb{Z}(2) \times BO) \times (\mathbb{Z}(2) \times BO).$$
All put together we have:

\[\Omega^{48}Y0 \cong Y0 \times \prod_{k=1}^{8} (\mathbb{Z}_2 \times BO). \]

This begs the question, what are the splittings for \(\Omega^8Y0, \Omega^8Y1, \) and \(\Omega^8Y2? \) Although our description of the homotopy of \(Y0 \) suggests a conjecture, we do not pursue this here.

Since our new non-immersion results certainly don’t come from K-theory, the new information is contained in the spaces \(Y0, Y1 \) and \(Y2. \)

In [KW07b], we computed the homology of the spaces \(ER(n)_{2n+2k} \) and all of the homotopy fixed point spaces in all of the splitting theorems listed so far. In the case of \(ER(2) \) we went further and computed the homology of all 48 spaces in the Omega spectrum. We can read off the homology of \(Y0 \times Y1 \times Y2 \) with ease from that computation and do so in Section 7.

The homotopy of \(ER(2) \) is computed in [HK01] and [KW07a], but best described for our purposes in [KW07b][Proposition 2.1]. We reorganize the description of this homotopy so the homotopy of all the \(BOs \) is visible, even as the spaces are looped down. There is very little “core” homotopy left that never shows up in a \(BO, \) and this is completely described in Section 6.

It is worth pointing out that there is compelling evidence that suggests that our spectrum \(ER(2) \) is equivalent to the spectrum \(TM(3) \) (topological modular forms with a level 3-structure) constructed by Mahowald-Rezk [MR09]. In particular, the unstable splittings studied in our paper may have interesting geometric content.

Before we begin with the actual technical results, we mention a word about our notation. We have chosen to be consistent with [HK01] in our notation. Consequently, in the sequel \(\alpha \) will denote the sign representation of \(\mathbb{Z}/2, \) and \(\sigma \) will denote the “shift” operator that suspends a spectrum by the virtual representation \(\alpha - 1. \) Unfortunately, this notation is in unavoidable conflict with [HHR] where \(\sigma \) is used to denote the sign representation.

The organization of the paper is as follows. We first prove the main technical result we need. Then we have three sections proving all the splitting theorems. Section 6 describes the homotopy and Section 7 the homology of interest. Finally, there is a brief appendix proving some results in a form that we need for the main technical result.

2. Proof of the main technical theorem

Recall from [KW07b] that:

Definition 2.1. A \(\mathbb{Z}/(2) \)-space \(X \) is said to be projective if

(i) \(H_\ast(X; \mathbb{Z}) \) is of finite type.

(ii) \(X \) is homeomorphic to \(\bigvee f (\mathbb{C}P^\infty)^{\alpha k_l} \) for some weakly increasing sequence of integers \(k_l, \) with the \(\mathbb{Z}/(2) \) action given by complex conjugation.

Definition 2.2. A \(\mathbb{Z}/(2) \)-equivariant \(H \)-space \(Y \) is said to have the projective property if there exists a projective space \(X, \) along with a \(\mathbb{Z}/(2) \)-equivariant map \(f: X \to Y, \) such that \(H_\ast(Y; \mathbb{Z}(2)) \) is generated as an algebra by the image of \(f. \)
Spaces with the projective property are not rare because many spaces have homology generated by the image of elements coming from complex projective space. Our examples include $\mathbb{MU}_{k(1+\alpha)}$, $\mathbb{BP}_{k(1+\alpha)}$, and $\mathbb{BP}(n)_{k(1+\alpha)}$ where this last is only for $k < 2^{n+1}$. For these diagonal spaces (as part of a bigraded real spectrum), we have the following theorem:

Theorem 2.3. Let Y be a space with the projective property. Given any integer $n \geq 0$, let E be the \mathbb{MU}-module spectrum \mathbb{BP} or $\mathbb{BP}(n)$. Then the following map is surjective:

$$\mathbb{MU}^{a+b\alpha}_n(Y) \rightarrow E^{a+b\alpha}(Y), \quad a \leq b < 2^{n+1},$$

where \mathbb{MU}_n denotes the 2-localization of the spectrum.

The above theorem allows us to prove equivariant versions of all classical splitting results one has for spaces (with the projective property) that appear in the omega spectra representing \mathbb{BP}, $\mathbb{BP}(n)$ and $\mathbb{E}(n)$.

Proof. By [HK01], \mathbb{BP} is an equivariant retract of \mathbb{MU}_n. So we only need to establish the theorem for $E = \mathbb{BP}(n)$. Furthermore, from 8.3 in the appendix, we may replace E by the completion $E = \text{Map}(EZ/(2)_+, E)$ in the degrees we are interested in.

Now recall that by definition of projective property, there is a projective space X so that there is a $\mathbb{Z}/(2)$-equivariant map: $f : X \rightarrow Y$, whose image generates the homology. It follows that $H_n(Y, \mathbb{Z}/(2))$ is free, and the $\mathbb{Z}/(2)$-equivariant map $\Omega \Sigma X \rightarrow Y$ is surjective in homology. The Atiyah-Hirzebruch spectral sequence now shows that $MU_*(\Omega \Sigma X)$, and $MU_*(Y)$ are free MU_*-modules, and the map $MU_*(\Omega \Sigma X) \rightarrow MU_*(Y)$ is split surjective. The next step is to pick equivariant representatives for the splitting.

Let Z denote the $\mathbb{Z}/(2)$-CW complex $\Omega \Sigma X$. Now Z admits the equivariant James filtration, which is known to split (equivariantly) into the wedge of spectra of the form $X^\wedge k$. Now consider the spectral sequence constructed using the cellular filtration of Z induced by the canonical (equivariant) cellular filtration of the projective space X, and converging to $\mathbb{MU}_*(Z)$. Since the James filtration of Z splits equivariantly, and X is projective, all generators in the E_2-term above represent permanent cycles, and therefore the above spectral sequence collapses. It follows that $\mathbb{MU}_*(Z)$ is a free \mathbb{MU}_*-module, or equivalently, $\mathbb{MU} \wedge Z$ is a free \mathbb{MU}_*-module spectrum on a generating set of finite type: $\mathbb{MU} \wedge Z = \bigvee_i \Sigma^{k_i(1+\alpha)} \mathbb{MU}$ where $\{k_1, k_2, \ldots\}$ is a weakly increasing sequence of non-negative integers. We may pick a suitable subsequence $\{\beta_1, \beta_2, \ldots\}$ in $\{k_1, k_2, \ldots\}$ so that we get a $\mathbb{Z}/(2)$-equivariant map:

$$\bigvee \Sigma^{\beta_i(1+\alpha)} \mathbb{MU} \rightarrow Y \wedge \mathbb{MU}$$

which is a (non-equivariant) equivalence. On freeing up our spectra, it follows that we have an equivariant equivalence of \mathbb{MU}-module spectra:

$$\bigvee \Sigma^{\beta_i(1+\alpha)} \wedge EZ/(2)_+ \wedge \mathbb{MU} \rightarrow EZ/(2)_+ \wedge Y \wedge \mathbb{MU}.$$

Now let $n \geq 0$ be any integer, and let E be the \mathbb{MU}-module spectrum \mathbb{MU}_n or $\mathbb{BP}(n)$. Mapping out of the above equivalence in the category of \mathbb{MU}-module spectra, we observe that in degrees $a + b\alpha$ for $a \leq b < 2^{n+1}$ we have:

$$E^{\ast\ast}(Y) = \tilde{E}^{\ast\ast}(Y) = E^{\ast\ast}(Y_{\langle \gamma_1, \gamma_2, \ldots \rangle}),$$
where \(\gamma_i \) is the generator in degree \(\beta_i(1+\alpha) \). In particular, it follows that \(\text{MU}^{a+b\alpha}(Y) \) surjects onto \(E^{a+b\alpha}(Y) \) for \(a \leq b < 2^{n+1} \).

Remark 2.4. Let \(E(n) = \text{BP}(n)[v_n^{-1}] \) be the equivariant Johnson-Wilson spectrum. Then the above proof also shows that the map

\[
\text{MU}(2)[v_n^{-1}]^{*,*}(Y) \longrightarrow E(n)^{*,*}(Y)
\]

is surjective in all bi-degrees. From this it follows easily that \(E(n) \) splits off unstably from the equivariant E-infinity ring spectrum \(\text{MU}(2)[v_n^{-1}] \).

3. **Splitting:** \(\text{BP}(n)(2^n-1)(1+\alpha) \)

We will use the main theorem of the previous section to construct unstable splittings of various spaces that have the projective property. In this section we prove Theorem 1.2.

Proof of Theorem 1.2. Consider the equivariant fibration:

\[
\text{BP}(n)(2^n-1)(1+\alpha) \overset{\gamma_n}{\longrightarrow} \text{BP}(n)(2^n-1)(1+\alpha) \longrightarrow \text{BP}(n-1)(2^n-1)(1+\alpha)
\]

Since \(\text{BP}(n-1)(2^n-1)(1+\alpha) \) is a space with the projective property, we know from the main theorem that the following map is surjective:

\[
(3.1) \quad \text{BP}(n)(2^n-1)(1+\alpha)(\text{BP}(n-1)(2^n-1)(1+\alpha)) \longrightarrow \text{BP}(n-1)(2^n-1)(1+\alpha)(\text{BP}(n-1)(2^n-1)(1+\alpha)).
\]

This implies that there is a section \(\tau : \text{BP}(n-1)(2^n-1)(1+\alpha) \rightarrow \text{BP}(n)(2^n-1)(1+\alpha) \) lifting the identity map on \(\text{BP}(n-1)(2^n-1)(1+\alpha) \) inducing a splitting of the form we wanted. \(\square \)

Remark 3.2. Notice that the above splitting is not as H-spaces. However, all non-trivial loopings of the form \((r+s\alpha)\) for \(r, s \geq 0 \), of this splitting yield splittings as H-spaces.

4. **The case of \(\text{BP}_0 \)**

Let us fix splittings as H-spaces:

\[
\text{BP}(n)_0 \cong \text{BP}(n)(2^n-1)(1+\alpha) \times \text{BP}(n-1)_0
\]

that were constructed in the previous section. We can now prove Theorem 1.3 from the introduction.

Proof of Theorem 1.3. Consider commutative diagrams of the form:

\[
\begin{array}{ccc}
\text{BP}_0 & \longrightarrow & \text{BP}(n)_0 \\
\downarrow & & \downarrow \\
\text{BP}_0 & \longrightarrow & \text{BP}(n-1)_0
\end{array}
\]
Notice that the horizontal maps get increasingly connective as n increases. In addition, the right vertical maps split by the previous section. It follows on taking homotopy inverse limits that one has a decomposition of H-spaces:

$$BP_\ast \cong \prod_{k \geq 0} BP(k)^{(2^k - 1)(1+\alpha)}$$

5. THE CASE OF $E(n)_{m(1+\alpha)}$

In this section we prove Theorems 1.4 and 1.6 from the introduction.

Proof of Theorem 1.4. Consider the commutative diagram with a split top horizontal sequence:

$$\begin{align*}
BP(n)^{(2^n+m-1)(1+\alpha)} &\xrightarrow{v_n} BP(n)^{m(1+\alpha)} &\xrightarrow{v_n} BP(n-1)^{m(1+\alpha)} \\
\downarrow & & \downarrow \\
BP(n)^{(2^n+m-1)(1+\alpha)} &\xrightarrow{v_n^2} BP(n)^{(m-2^n+1)(1+\alpha)}
\end{align*}$$

Notice also that the vertical map given by multiplication by v_n splits with cokernel given by: $BP(n-1)^{(m-2^n+1)(1+\alpha)}$. It follows that the bottom horizontal map is also split with cokernel given by: $BP(n-1)^{m(1+\alpha)} \times BP(n-1)^{(m-2^n+1)(1+\alpha)}$.

Continuing the diagram vertically, with increasing powers of v_n, and taking colimits, we therefore have an equivariant splitting:

$$E(n)_{m(1+\alpha)} \cong BP(n)^{(2^n+m-1)(1+\alpha)} \times \prod_{k \geq 0} BP(n-1)^{(m-k(2^n-1))}(1+\alpha)$$

As noted earlier, for $m = 2^n - 1$, this splitting is not as H-spaces. However, all non-trivial loops on that splitting does yield a splitting as H-spaces.

The proof of the above theorem allows us to identify the splitting in terms of homotopy. In particular, the proof shows that the following map given by multiplication by v_n is split:

$$\begin{align*}
BP(n)^{(2^n+m-1)(1+\alpha)} &\rightarrow BP(n)^{(m-i(2^n-1))(1+\alpha)} \\
&\rightarrow \prod_{0 \leq k \leq i} BP(n-1)^{(m-k(2^n-1))(1+\alpha)}
\end{align*}$$

In addition, the image:

$$\pi_*BP(n)^{(m-i(2^n-1))(1+\alpha)} \rightarrow \pi_*E(n)^{m(1+\alpha)}$$

is exactly

$$v_n^{-i}\pi_*BP(n) \cap \pi_*E(n)^{m(1+\alpha)}.$$

It follows that:

Theorem 5.2. Under the splitting given in the previous theorem, the image:

$$\pi_*BP(n)^{(2^n+m-1)(1+\alpha)} \times \prod_{0 \leq k \leq i} BP(n-1)^{(m-k(2^n-1))(1+\alpha)} \rightarrow \pi_*E(n)^{m(1+\alpha)}$$
is exactly
\[v_n^{-1} \pi_\star \mathbb{P}^\langle n \rangle \cap \pi_\star \mathbb{E}(n)m(1+\alpha). \]
In particular, \(\pi_\star \mathbb{P}^\langle n-1 \rangle(m-(2n-1))(1+\alpha) \) is supported on elements in \(\pi_\star \mathbb{E}(n)m(1+\alpha) \) with \(v_n \)-exponent exactly \(-i\).

Having identified the splitting in homotopy, we can analyze the periodicity of the space \(\mathbb{E}(n)_0 \). For this, let \(\lambda = 2^{2n+1} - 2n^2 + 1 \), and recall that there is an invertible element \(y(n) \in \pi_{\lambda-1}\mathbb{E}(n)_{-(1+\alpha)} \) [KW07a]. This element is given by \(y(n) = v_n^{2n-1}\sigma^{-2^{n+1}(2^{n-1}-1)} \). Multiplication by \(y(n) \), yields an equivariant equivalence: \(\mathbb{E}(n)m(1+\alpha) \to \Omega^{\lambda-1}\mathbb{E}(n)(m-1)(1+\alpha) \). Since the \(v_n \) exponent of \(y(n) \) is exactly \(2^n - 1 \), we derive the useful consequence of the above theorem, namely we have proven Theorem 1.6 of the introduction.

6. The Homotopy of \(ER(2) \)

In the computation of the homotopy of \(ER(2) \), [HK01, KW07a], the only concern was for the degree mod 48, but that no longer suffices. The homotopy of the fixed point spaces for the bigraded object are generated by:

- \(v_0(0) = 2 \) in degree 0
- \(v_0(1) \) in degree \(2\alpha - 2 \)
- \(v_0(2) \) in degree \(4\alpha - 4 \)
- \(v_0(3) \) in degree \(6\alpha - 6 \)
- \(v_1(0) \) in degree \(\alpha + 1 \)
- \(v_1(1) \) in degree \(5\alpha - 3 \)
- \(v_2 \) in degree \(3\alpha + 3 \)
- \(a \) in degree \(-\alpha \)
- \(\sigma^8 \) in degree \(8\alpha - 8 \)

Both \(v_2 \) and \(\sigma^8 \) are invertible and we define the invertible:

\[y(2) = y = v_3^2\sigma^{-8} \text{ in degree } 17 + \alpha \]

To get the homotopy of \(ER(2) \) we need the \(\alpha \) coordinate equal to zero. We can move our generators there using \(y \) and rename them in the process. We capture their degrees doing this:

\[y^{-2}v_0(1) = \alpha_1 \text{ in degree } -36 \]
\[y^{-4}v_0(2) = \alpha_2 \text{ in degree } -72 \]
\[y^{-6}v_0(3) = \alpha_3 \text{ in degree } -108 \]
\[y^{-1}v_1(0) = \alpha \text{ in degree } -16 \]
\[y^{-5}v_1(1) = w \text{ in degree } -88 \]
\[y^{-3}v_2 = g \text{ in degree } -48 \]
\[ya = x \text{ in degree } 17 \]

The element \(g \) is our periodicity operator. Apologies for using \(\alpha \) for two different things.
The relations as written down in [KW07b] must be modified to take into account the real degrees as opposed to just the mod 48 degrees. The relations are given by:

\[
0 = 2x = x^7 = x^3w = x^3\alpha = x\alpha_1, \quad w\alpha_2 = 2\alpha_2g^3, \quad \alpha_2^2g^3 = w^2
\]

\[
\alpha_1^2 = 2\alpha_2 \quad \alpha_2^2 = 4g^3 \quad \alpha_3^2 = 2\alpha_2g^3
\]

\[
\alpha_1\alpha_2 = 2\alpha_3 \quad \alpha_1\alpha_3 = 4g^3 \quad \alpha_2\alpha_3 = 2\alpha_1g^3
\]

\[
\alpha\alpha_1g^3 = \alpha_3w \quad \alpha\alpha_2 = 2w \quad \alpha\alpha_3 = \alpha_1w
\]

As a module over \(\mathbb{Z}_{(2)}[\alpha, g, g^{-1}]\), the homotopy can be described as having generators:

\[
1, \quad w, \quad \alpha_1, \quad \alpha_3, \quad \text{and} \quad \alpha_2
\]

with one relation:

\[
\alpha\alpha_2 = 2w,
\]

copies of \(\mathbb{Z}/(2)[\alpha, g, g^{-1}]\) on generators

\[
x, \quad x^2, \quad xw, \quad x^2w,
\]

and copies of \(\mathbb{Z}/(2)[g, g^{-1}]\) on

\[
x^3, \quad x^4, \quad x^5, \quad x^6.
\]

We want to rewrite this using a special element, \(h = g^{-1}\alpha_3\), of degree 0. Because \(g\) is invertible, we can replace any \(\alpha^3\) with \(h\). Rewritten using \(h\), we have that the homotopy of \(ER(2)\) is a \(\mathbb{Z}_{(2)}\) on each of:

\[
\alpha^j w^\epsilon g^s h^k \quad \alpha_1\alpha^j w^\epsilon g^s h^k \quad \alpha_3\alpha^j w^\epsilon g^s h^k \quad \alpha_2 g^s
\]

\[
0 \leq j \leq 2 \quad 0 \leq \epsilon \leq 1 \quad s \in \mathbb{Z} \quad k \geq 0
\]

and a \(\mathbb{Z}/(2)\) on each of:

\[
x^i \alpha^j w^\epsilon g^s h^k \quad 1 \leq i \leq 2
\]

\[
x^v g^s \quad 3 \leq v \leq 6,
\]

where \(j, \epsilon, s, \) and \(k\) are as above.

It is easy to see (look mod 48) that the elements of degree zero are just the \(h^k\), but we can do much better and write down all elements of non-negative degrees. Let \(s, k \geq 0\), the elements and the degrees of all non-negative degree elements are as follows.
and elements we call CORE homotopy:

\[
\begin{align*}
48s + 3 & \quad g^{1-s}x^3 \\
48s + 6 & \quad g^{2-2s}x^6 \\
48s + 20 & \quad g^{1-s}x^4 \\
48s + 24 & \quad g^{-s-2}\alpha_2 \\
48s + 37 & \quad g^{1-s}x^5
\end{align*}
\]

We will also need elements we call CORE\(^+\), where \(s \in \mathbb{Z}\).

We note that \(h\) times the elements with \(x^3\) in them are all zero because of the relation \(x^3\alpha = 0\), but that

\[g^{-s-2}\alpha_2 h = 2\omega\alpha^2 g^{-s-3}.\]

Note also that the non-CORE homotopy is exactly the same as an infinite number of copies of \(Z(2) \times BO\). Unfortunately, that isn’t exactly how it works.

Going back to the splitting in the \(n=2\) case, we have:

\[\mathbb{E}(2)_0 \cong \mathbb{BP}(2)_{3(1+\alpha)} \times \prod_{k \geq 0} \mathbb{BP}(1)_{-k3(1+\alpha)}.\]

First, we note that the homotopy fixed points of \(\mathbb{E}(2)_0\) is \(ER(2)\), the zeroth space of the Omega spectrum for \(ER(2)\). Next, we note that the homotopy fixed points of \(\mathbb{BP}(1)_{-k3(1+\alpha)}\) is just \(Z(2) \times BO\).

Letting \(Y\) be the homotopy fixed points for \(\mathbb{BP}(2)_{3(1+\alpha)}\), we have, as in the introduction:

\[ER(2)_0 \cong Y0 \times \prod_{k \geq 0} (Z(2) \times BO)\]

The space \(Y0\) is of particular interest and so we would like to have its homotopy. We already know its homology from [KW07b], so we know it is 2-connected, so the bottom homotopy group is a \(Z/(2)\) in degree 3 generated by \(g\).

Each \(h^k\), \(k \geq 0\), must be the generator for a \(Z(2)\) associated with one of the \(Z(2) \times BO\). It is now clear that if we know the homotopy of the \(Z(2) \times BO\) associated with 1 (i.e. \(k = 0\) above), we get the homotopy of all the others by multiplying by powers of \(h\). Since \(Y0\) has no homotopy in degree 1, the \(Z/(2)\) in degree 1 for our \(Z(2) \times BO\) associated with 1 must be \(x\alpha\). Likewise for the 2-degree element \(x^2\alpha^2\). The 4-degree element is a \(Z(2)\) on \(\alpha_3\alpha^2g^{-3}\). From this we can compute our 8-degree homotopy element by squaring:

\[(\alpha_3\alpha^2g^{-3})^2 = \alpha_3^2\alpha^4g^{-6}2\alpha_2g^3\alpha g^{-6} = 4\omega\alpha^3g^{-3} = 4wg^{-2}h\]

The degree 8 element in our first \(BO\) is \(wg^{-2}h\). This is our \(BO\) periodicity element. From this we can now find all of the rest of the homotopy of our first \(BO\). The main thing left to do is compute powers of the periodicity element.

For degree 16 we have

\[(wg^{-2}h)^2 = w^2g^{-4}h^2 = \alpha^2g^3g^{-4}h^2 = \alpha^2g^{-1}h^2\]

Continuing in this fashion: in degree 24 we have \(w\alpha^2g^{-3}h^3\); degree 32, \(\alpha g^{-1}h^5\); degree 40, \(w\alpha g^{-3}h^6\); degree 48, \(g^{-1}h^8\).

This sequence had a nice ending. Multiplication by the periodicity element \(g\) corresponds to looping down 48 times and takes this 48 degree element to \(h^8\) in the 9-th copy of \(Z(2) \times BO\).
We can now write down all the homotopy generators of our first $Z(2) \times BO$, for $k \geq 0$.

<table>
<thead>
<tr>
<th>deg</th>
<th>expr</th>
<th>deg</th>
<th>expr</th>
</tr>
</thead>
<tbody>
<tr>
<td>$48k$</td>
<td>$g^{-k}h^{8k}$</td>
<td>$48k + 24$</td>
<td>$\omega \alpha^2 g^{-k-3}h^{8k+3}$</td>
</tr>
<tr>
<td>$48k + 1$</td>
<td>$x\omega g^{-k}h^{8k}$</td>
<td>$48k + 25$</td>
<td>$x\omega g^{-k-2}h^{8k+4}$</td>
</tr>
<tr>
<td>$48k + 2$</td>
<td>$x^2\alpha^2 g^{-k}h^{8k}$</td>
<td>$48k + 26$</td>
<td>$x^2\omega g^{-k-2}h^{8k+4}$</td>
</tr>
<tr>
<td>$48k + 4$</td>
<td>$\alpha_3 \alpha^2 g^{-k-3}h^{8k}$</td>
<td>$48k + 28$</td>
<td>$\alpha_1 \alpha^2 g^{-k-2}h^{8k+4}$</td>
</tr>
<tr>
<td>$48k + 8$</td>
<td>$wg^{-k-2}h^{8k+1}$</td>
<td>$48k + 32$</td>
<td>$\omega g^{-k-1}h^{8k+5}$</td>
</tr>
<tr>
<td>$48k + 9$</td>
<td>$xw\omega g^{-k-2}h^{8k+1}$</td>
<td>$48k + 33$</td>
<td>$x\alpha^2 g^{-k-1}h^{8k+5}$</td>
</tr>
<tr>
<td>$48k + 10$</td>
<td>$x^2\omega \omega g^{-k-2}h^{8k+1}$</td>
<td>$48k + 34$</td>
<td>$x^2\omega g^{-k}h^{8k+6}$</td>
</tr>
<tr>
<td>$48k + 12$</td>
<td>$\alpha_1 g^{-k-1}h^{8k+2}$</td>
<td>$48k + 36$</td>
<td>$\alpha_3 g^{-k-3}h^{8k+6}$</td>
</tr>
<tr>
<td>$48k + 16$</td>
<td>$\alpha_2 g^{-k-1}h^{8k+2}$</td>
<td>$48k + 40$</td>
<td>$w\alpha g^{-k-3}h^{8k+6}$</td>
</tr>
<tr>
<td>$48k + 17$</td>
<td>$xg^{-k}h^{8k+3}$</td>
<td>$48k + 41$</td>
<td>$xw\alpha g^{-k-3}h^{8k+6}$</td>
</tr>
<tr>
<td>$48k + 18$</td>
<td>$x^2\alpha g^{-k}h^{8k+3}$</td>
<td>$48k + 42$</td>
<td>$x^2w g^{-k-2}h^{8k+7}$</td>
</tr>
<tr>
<td>$48k + 20$</td>
<td>$\alpha_3 \alpha g^{-k-3}h^{8k+3}$</td>
<td>$48k + 44$</td>
<td>$\alpha_1 \alpha g^{-k-2}h^{8k+7}$</td>
</tr>
</tbody>
</table>

The homotopy of all of the other $Z(2) \times BO$ are obtained by taking powers of h times this.

What remains must be the homotopy of $Y0$. This is the CORE and all of the above for lower powers of h than what is used. This has a nice BO related description. Recall the notation $bo(n)$ for the spectrum obtained from the connective version of $Z(2) \times BO$ by killing off all of the stable homotopy groups in degrees less than n. The stable homotopy of $bo = bo(0)$ is the same as the unstable homotopy of $Z(2) \times BO$.

We can now read off a description of the homotopy of the zeroth space of $ER(2)$ from the above. For example, we first take every element that is divisible by h^{8k+1} and we see, using Bott periodicity and the degree of g, that there is a

$$\pi_* bo(48k + 8) \cong \Sigma^{8k} \pi_* bo(8) \cong g^{-k} \pi_* bo(8)$$

and, for the $k = 0$ case, h multiplied times

$$\pi_* bo(8)$$

maps this homotopy injectively into our first: $Z(2) \times BO$. The bottom class of $\pi_* bo(8)$ in degree 8 is wg^{-2} and maps by h to the 8 degree class $wg^{-2}h$ in that first $Z(2) \times BO$ listed above. Furthermore, the 48 degree homotopy would be $g^{-1}h^7$ (we divide all the higher terms by one h), so looping 48 times, i.e., multiplying by g, gives us h^7, and we see that the homotopy we are looking at in this instance becomes the homotopy of the $Z(2) \times BO$ associated with h^7.

Continuing, dividing by h^{8k+i}, $0 < i \leq 8$, and using the same notation where g^{-k} keeps track of our degrees for us with $k \geq 0$, we have, using the above notation:

Theorem 6.1.

$$\pi_*(Y0) \cong CORE \times \prod_{k \geq 0} g^{-k} (\pi_* bo(8) \times \pi_* bo(12) \times \pi_* bo(17) \times$$

$$\pi_* bo(25) \times \pi_* bo(32) \times \pi_* bo(34) \times \pi_* bo(42) \times \pi_* bo(48))$$
Notice that by Bott periodicity there are not so many different types as this
seems to imply. The homotopy associated with 48k + 8, 48k + 32, and 48k + 48 are
just suspensions of the homotopy of \(bo \). 48k + 12 is just \(bo(4) \), and 48k + 17 and
48k + 25 are \(bo(1) \). Finally, 48k + 34 and 48k + 42 are associated with \(bo(2) \).

We keep the notation as is though because \(h \) maps these homotopy groups in-
jectively following this sequence:

\[
\cdots \rightarrow g^{-k} \pi_* bo(48) \rightarrow g^{-k} \pi_* bo(42) \rightarrow g^{-k} \pi_* bo(34) \rightarrow
\]

\[
g^{-k} \pi_* bo(25) \rightarrow g^{-k} \pi_* bo(17) \rightarrow
\]

\[
g^{-k} \pi_* bo(12) \rightarrow g^{-k} \pi_* bo(8) \rightarrow g^{-k+1} \pi_* bo(48) \rightarrow
\]

\[
g^{-k+1} \pi_* bo(42) \rightarrow g^{-k+1} \pi_* bo(34) \rightarrow g^{-k+1} \pi_* bo(32) \rightarrow \cdots
\]

In the formula for the homotopy of \(Y_0 \), we can replace \(\text{CORE} \) with \(\text{CORE}^+ \) and
let \(k \in \mathbb{Z} \) and we have the homotopy for all of \(ER(2) \). The copies of \(Z_{(2)} \times BO \) are
associated with \(k < 0 \).

7. \(ER(2) \) and Homology

In [KW07b], the complete computation for the homology of all spaces in the
Omega spectrum for \(ER(2) \) is carried out. We would like to have the homology of the
spaces \(Y_0, Y_1 \) and \(Y_2 \). These are easy to read off of the results of [KW07b].
We need to review some notation.

We are only interested in the 0, -16, and -32 spaces in the Omega spectrum. The
dimension zero elements are free over \(Z_{(2)} \) on \([\alpha^i] \) and \([g^k] \) with \(i \geq 0 \) and \(k \in \mathbb{Z} \).

We have elements \(b_2 = b_{(i)} \in H_2 + E(2) \) that come from the complex projective
space elements \(b_j \). We have corresponding elements

\[
\beta_{2i} = \beta_{(i)} \in H_2 \overline{ER(2)}_{-16} = H_2 \overline{ER(2)}_{1+\alpha^i}.
\]

The \(\beta_{(i)} \) all come from the real projective space elements \(\beta_{2j} \).

Let \(J = (j_0, j_1, \ldots) \) have \(j_i \geq 0 \) with only a finite number not equal to zero. We
define

\[
\beta^J = \beta^{j_0} \beta^{j_1} \beta^{j_2} \cdots.
\]

Recall that in a Hopf ring we have two products, the circle product coming from the
ring structure and the star product coming from the Hopf algebra structure. We
suppress the circle from our notation so the above products are circle products. We
define \(\beta^J[\alpha^i][g^k] \) to be allowable if all \(j_k < 2 \) when \(i > 0 \) and \(J \neq 2\Delta_{i_1} + 4\Delta_{i_2} + J' \),
\(i_1 \leq i_2 \), when \(i = 0 \). Define the length of \(J \) to be \(\ell(J) = \Sigma j_i \).

From [KW07b, (2.6)] we have (where \(P \) denotes the polynomial algebra mod 2):

\[
H_2 \overline{ER(2)}_{-16} \cong P[\beta^J[\alpha^i][g^k]] \quad \beta^J[\alpha^i][g^k] \text{ allowable}
\]

We are only interested in the 0, -16 and -32 spaces, and, using \(h = \alpha^3 g^{-1} \) we
can rewrite this. Consider first the positive degree elements:

\[
H_2 \overline{ER(2)} \cong P[\beta^J[\alpha^3][g^{-a-1}][h^s]]
\]

allowable with \(\ell(J) = 3a + \epsilon \), \(a \geq 0 \), \(0 < \epsilon \leq 3 \), \(s \geq 0 \).

Whenever there is an \(\alpha \), either because \(s > 0 \) or \(3 - \epsilon > 0 \), we have \(j_i < 2 \) from
the definition of allowable. If \(s > 0 \) we have exactly one element in each degree,
giving us precisely the homology of the BO associated with h^s. If $s = 0$ we get the homology of one more BO when using all of these J with $j_i < 2$. What is left must be the homology of $Y0$, and that is:
\[
H_*(Y0) \cong P[\beta^J[g^{-a}]] \quad J \text{ allowable} \quad \ell(J) = 3a, \quad \text{some } j_i > 1.
\]
Note that the lowest degree element is, indeed, in degree 3: $\beta^3_{(0)}[g^{-1}]$. A similar analysis gives:
\[
H_*(Y1) \cong P[\beta^J[g^{-a}]] \quad J \text{ allowable} \quad \ell(J) = 3a + 1, \quad \text{some } j_i > 1.
\]
\[
H_*(Y2) \cong P[\beta^J[g^{-a}]] \quad J \text{ allowable} \quad \ell(J) = 3a + 2, \quad \text{some } j_i > 1.
\]
For $H_*(Y1)$, the lowest degree element is in degree 4 and is $\beta^4_{(0)}[g^{-1}]$. For $H_*(Y2)$, the lowest degree element is in degree 2, associated with BSO, and is $\beta^2_{(0)}$, and the degree 5 element in $H_*(Y2')$ (from the introduction) is $\beta^5_{(0)}[g^{-1}]$. Putting this all together, we get:

Theorem 7.2.

$H_*(Y0 \times Y1 \times Y2) \cong P[\beta^J[g^{-a}]] \quad J \text{ allowable} \quad 0 \leq \ell(J) - 3a < 3, \quad \text{some } j_i > 1.$

8. Appendix

For the reader’s benefit, we will reprove some results from [Hu02] regarding the homotopy of $\mathbb{BP}\langle n \rangle$ in a manner that is helpful to us.

For this computation, the standard method used is to consider the Tate diagram given by rows that are cofibrations:

\[
\begin{array}{cccc}
EZ/2_+ \land \mathbb{BP}\langle n \rangle & \mathbb{BP}\langle n \rangle & \tilde{E}Z/2 \land \mathbb{BP}\langle n \rangle \\
\downarrow_{EZ/2_+ \land \varphi} & \varphi & \downarrow_{\tilde{E}Z/2 \land \varphi} \\
EZ/2_+ \land \mathbb{BP}\langle n \rangle & \mathbb{BP}\langle n \rangle & \tilde{E}Z/2 \land \mathbb{BP}\langle n \rangle
\end{array}
\]

where $\varphi : \mathbb{BP}\langle n \rangle \to \tilde{E}BP\langle n \rangle$ is the “completion” map given by the canonical map $\varphi : \mathbb{BP}\langle n \rangle \to \text{Map}(EZ/2, \mathbb{BP}\langle n \rangle)$ induced by the obvious projection $EZ/2_+ \to S^0$.

Since the map φ is a (non-equivariant) equivalence, it follows that $EZ/2_+ \land \varphi$ is an equivariant equivalence. Hence, the fiber of φ is equivalent to the fiber of $\tilde{E}Z/2 \land \varphi$. Now, one has standard (tri-graded) spectral sequences that compute the homotopy of the spectra $\mathbb{BP}\langle n \rangle$ and $\tilde{E}Z/2 \land \mathbb{BP}\langle n \rangle$, called the Borel cohomology and the Tate cohomology spectral sequences for $\mathbb{BP}\langle n \rangle$ respectively. The respective E_2-terms are given by:

\[
H^p(\mathbb{Z}/2, \pi_\mu \mathbb{BP}\langle n \rangle) \Rightarrow \pi_{\mu-p} \tilde{E}BP\langle n \rangle, \quad \hat{H}^p(\mathbb{Z}/2, \pi_\mu \mathbb{BP}\langle n \rangle) \Rightarrow \pi_{\mu-p} \tilde{E}Z/2 \land \tilde{E}BP\langle n \rangle
\]

where $\hat{H}(\mathbb{Z}/2)$ denotes Tate-cohomology and μ is any element in $RO(\mathbb{Z}/2)$ that can be written as $a + ba$, where α is the sign representation of $\mathbb{Z}/2$. One may even write the respective E_1 terms explicitly as:

\[
Z_2[v_i, \sigma^{\pm 1}, a], \quad Z_2[v_i, \sigma_{\pm 1}, a_{\pm 1}], \quad i \leq n, \quad v_0 = 2
\]

The classes v_i, σ, a have tri-degree given by:

\[
|v_i| = (0, (2^i - 1)(1 + \alpha)), \quad |\sigma| = (0, -1 + \alpha), \quad |a| = (1, 1 - \alpha)
\]
In addition, the classes v_i and a are permanent cycles, and the differentials are given by the universal differentials computed for the Borel cohomology spectral sequence for $\tilde{\mathbb{M}}(2)$ ([HK01]):

$$d_{2k+1-1}^{-2k} = v_k a^{2k+1-1}$$

These differentials induce differentials in the Tate cohomology spectral sequence and it is straightforward to derive the following result in [Hu02]:

Corollary 8.1. The Tate spectral sequence for $\mathbb{B}(n)$ collapses at E^2_{2n+1} to yield:

$$\pi_*E\tilde{Z}/2 \wedge \mathbb{B}(n) = \mathbb{Z}/2[\sigma^{2n+1}, a^{\pm 1}]$$

In addition, multiplication by v_i is given by zero in $\pi_*E\tilde{Z}/2 \wedge \mathbb{B}(n)$. Furthermore, the image of the map $\pi_*\mathbb{B}(n) \to \pi_*E\tilde{Z}/2 \wedge \mathbb{B}(n)$ is given by $\mathbb{Z}/2[\sigma^{2n+1}, a]$ and, the kernel of the map is contained in the image of $\pi_*\mathbb{M}(2)$.

The next step is to compute the homotopy of the geometric fixed point spectrum $E\tilde{Z}/2 \wedge \mathbb{B}(n)$, and identify it as a subgroup of the homotopy of the Tate cohomology spectrum. Since there is no natural spectral sequence that computes the homotopy of the geometric fixed points, the argument used in [Hu02] is by induction starting with $\mathbb{B}(0)$ and inducting upwards. Alternatively, one may start with the observation that $E\tilde{Z}/2 \wedge \mathbb{B} = H\mathbb{Z}/2[a^{\pm 1}]$, and kill the elements v_i for $i > n$. Then using the computations made in [HHR], we see that $\pi_*E\tilde{Z}/2 \wedge \mathbb{B}(n)$ can be identified with the subgroup of the homotopy of the Tate cohomology spectrum given by $\mathbb{Z}/2[\sigma^{-2n+1}, a^{\pm 1}]$ as calculated in [Hu02]. From the above observation we derive:

Corollary 8.2. Let F denote the fiber of the map from the geometric fixed point spectrum to the Tate fixed point spectrum. Then there is a short exact sequence in homotopy:

$$0 \to \pi_*E\tilde{Z}/2 \wedge \mathbb{B}(n) \to \pi_*E\tilde{Z}/2 \wedge \mathbb{B}(n) \to \pi_*\Sigma F \to 0$$

In particular, $\pi_*\Sigma F$ is isomorphic to the ideal generated by σ^{2n+1} in $\mathbb{Z}/2[\sigma^{2n+1}, a^{\pm 1}]$. In addition, multiplication by v_i is given by zero on π_*F.

Now recall that the fiber of completion map φ is given by F. Since we know the homotopy of F, and the fact that inverting v_n collapses the fiber, we have essentially managed to show:

Theorem 8.3. The map φ is an equivalence on inverting v_n. In addition, the map $\pi_{a+b\alpha} \mathbb{B}(n) \to \pi_{a+b\alpha} \mathbb{B}(n)$ is an isomorphism for $a \geq b > -2^{n+1}$. Furthermore, in this range, the homotopy is given by the image of $\pi_{a+b\alpha} \mathbb{M}(2)$.

\[\text{References}\]

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218

E-mail address: nitu@math.jhu.edu

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218

E-mail address: wsw@math.jhu.edu