Outline of solutions to graded HW5

Shuai Wang

Exercise 2.5:

#6. Follow Example 9 in this section, and you can get easily that there are at most two homomorphisms \(C_6 \rightarrow C_4 \). A priori, there are three possibilities for the image (the three subgroups of \(C_4 \)), and two of the cases do occur, as you can check. [It may help for you to notice that \(C_6 \cong C_3 \times C_2 \).]

#12(d)(f). (d) Since \(G = G_1 \) are commutative groups, it is easy to check \(\alpha \) is a homomorphism. As for the bijectivity, just compute everything. \(\alpha(1) = 1, \alpha(2) = 3, \alpha(3) = 2, \alpha(4) = 4 \). Note that \(0, 5 \notin G \).

(f) \(G \) and \(G_1 \) are additive groups now, while they were multiplicative groups in (d)(0 is in \(G = G_1 \), if they were multiplicative groups, what was the inverse of 0?). \(\alpha \) is a homomorphism but not surjective (1,3,5,7 don’t have preimages), so it is not an isomorphism.

#25. As an additive group, \(\mathbb{Z} \) is infinite cyclic while \(\mathbb{Q} \) is not. That is one’s intuition. To prove this problem, suppose that \(\alpha : \mathbb{Q} \rightarrow \mathbb{Z} \) is an isomorphism. Suppose the preimage of 1 is \(a \in \mathbb{Q} \), now consider \(a/2 \in \mathbb{Q} \), does it have image in \(\mathbb{Z} \) under \(\alpha \)? (If so, \(2(a/2) \) maps to \(1 \in \mathbb{Z} \).)

#37. (a) Reflexive: \(a \sim a \), for \(a = 1 \cdot a \cdot 1^{-1} \); here you can’t use some other \(g \in G \) instead of 1 because \(G \) is not assumed to be commutative.) Symmetric: If \(a \sim b \), then \(b = gag^{-1} \) for some \(g \in G \), thus \(a = g^{-1}bg = (g^{-1})b(g^{-1})^{-1} \), \(b \sim a \). Transitive: If \(a \sim b \) and \(b \sim c \), then write \(b = gag^{-1} \), \(c = hgh^{-1} \) for some \(g, h \in G \), thus \(c = hgh^{-1} = hgag^{-1}h^{-1} = (hg)a(hg)^{-1} \), so \(a \sim c \)(note here the elements \(g, h \) can not be presumed to be the same. The sentence “\(b = gag^{-1} \) for some \(g \in G \)” doesn’t mean \(g \) is a fixed element in \(G \). It just means there is some element in \(G \), denoted by \(g \). You must choose another symbol when the symbol \(g \) is already used.). After checking these three properties, we have by definition that \(\sim \) is an equivalence relation on \(G \).

(b) A singleton equivalence class is a class which has only one element. Of course, \(\{1\} \) is an example. In general, suppose \(\{a\} \) is a singleton equivalence class. It amounts to that \(\{a\} = \{b \in G | b \sim a\} \). And \(\{a\} = \{b \in G | b \sim a\} \iff \{a\} = \{b \in G | b = gag^{-1}, \text{for some } g \in G\} \iff \{a\} = \{gag^{-1}, \text{for all } g \in G\} \iff a = gag^{-1}, \text{for all } g \in G \iff a \in Z(G) \), the centralizer of \(G \). So, the elements of \(G \) that have singleton equivalence classes are exactly those in \(Z(G) \).
Exercise 2.6:

#12(a). $|G| = 12$, so by Lagrange’s Theorem, $|g|$ divides $|G|$. Thus the order of g must be one of $1, 2, 3, 4, 6$ or 12. If $|g| = 1, 2, 4$, then $g^1 = 1$; else if $|g| = 3, 6$, then $g^6 = 1$. They contradict the conditions given in the problem. So the only possibility is $|g| = 12$, which means $G = \langle g \rangle$.

#16. (a) Use the hint. m and n are relatively prime, then $1 = x m + y n$ for some integers x and y. So $g = g^1 = g^{x \text{mod} y} = g^{x m} g^{y n} = (g^m)^x (g^n)^y = 1$ ($1^n = 1$ whenever x is a positive or negative integer, or 0.)

(b) Use the hint. Let $\alpha : G \rightarrow G$, $a \mapsto a^m$ be a mapping. This problem requires you to show it is onto. So it suffices to show it is one-to-one by the hint. To show it is one-to-one, use the hint in (a). If $a^m = b^m$, then $a^{mx} = b^{mx}$, then $a = a^{mx-ny} = b^{mx-ny} = b$, for $a^m = b^m = 1$ ($|G| = n$, so $|a|, |b|$ divide $|G| = n$ by Lagrange’s Theorem). Note that α need not be a homomorphism, so you don’t show it is one-to-one by showing that the “kernel” is trivial ($a^m = 1 \implies a = 1.$)