Cyclic

The notion of a T-cyclic subspace of V is rather straightforward, but the consideration of such such subspaces is one important ingredient in understanding the “simplest form” of a linear transformation. Some other key ingredients in the process are: T-invariant spaces (in general), direct sums, and generalized eigenspaces. All but the last one have appeared already in the course.

Let $T : V \rightarrow V$ be a linear transformation of a vector space over some field \mathbb{F}, and let $v \in V$. The definition of the T-cyclic subspace W of V generated by V is, in words, the smallest T-invariant subspace V that contains v. What does that mean explicitly? W must contain v, Tv, $T(Tv) = T^2v$, etc., and be closed under the two operations of linear algebra (vector addition and scalar multiplication). We can see that

$$\text{Span}\{T^\ell(v) \mid \ell \geq 0\}$$

is T-invariant, so that’s the W we are taking about.

The main issue one has to address is: If one has a proper, non-trivial T-invariant subspace W, does it have a T-invariant complementary subspace? or better, how can we determine one (at least in principle)? The theorem (Jordan canonical form) says: Let V be a finite-dimensional vector space, over a field in which every polynomial splits into a product of linear factors (e.g., \mathbb{C}). Let $T : V \rightarrow V$ be a linear transformation. Then V can be decomposed into a direct sum of T-cyclic subspaces ($V = \bigoplus W_i$), on each of which the restriction T_{W_i} of T to W_i has only one eigenvalue (with the W_i’s as small as possible). (Two such W_i’s could have the same single eigenvalue.)

Do the following problems:

1. Show that $W = P(T)v$, which means $\{w \in V \mid w = g(T)v \text{ for some } g \in \mathbb{F}(t)\}$.

2. Show that when V is finite-dimensional, of dimension n,
 a) $W = \text{Span}\{T^\ell v \mid 0 \leq \ell < n\}$.
 b) Show that there is a unique $d < n$ for which $\beta = \{T^\ell v \mid \ell < d\}$ is a basis of W.
 c) For d as in part b), show that there is a unique monic polynomial $g(t)$ (i.e., the leading coefficient of g is equal to 1) of degree d for which $g(T)v = 0$.
 d) Determine the matrix $[T]_\beta$ when β from part b) is taken as basis of W.
 e) Let A be the 2×2 matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Determine the L_A-cyclic subspaces of \mathbb{F}^2 generated by each of the following vectors:

 (i) e_1, (ii) $(e_1 + e_2)$, (iii) e_2, (iv) $(2e_1 + e_2)$.

 f) Determine all L_A-cyclic subspaces of \mathbb{F}^2 when $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Do this same for $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

1