Excentric compactifications Steven Zucker

The term *excentric* was coined by the author [6:§1],[13:§2]. It is accented on the first syllable, in contrast with the English word “eccentric”, and conveys the following idea. For now, let W be a unipotent algebraic group. Then W/W (the trivial group) is the *reductive* quotient of W. When $U \subseteq W$ is a subgroup that is the center of something, then W/U is the (or an) excentric quotient of W.

We present the setting for these notes. Let D be a symmetric space of non-compact type, and Γ an arithmetically defined group of isometries of D; put informally, this means that some algebraic group G over \mathbb{Q} has its real points giving the isometry group of D, and Γ is roughly $G(\mathbb{Z})$. If Γ is not too big (i.e., is torsion-free, later neat), then $X = \Gamma \backslash D$ is a manifold. When D has an invariant complex structure, D is called *Hermitian*, as is X. The latter is called a locally symmetric variety, for X is a quasi-projective complex algebraic variety [2].

Typically, X is non-compact and one soon realizes that it is important to compactify it. There exist too many compactifications of X, so we select one or more to suit a given purpose. It is common enough to attach a Γ-equivariant boundary ∂D to D, and then take the quotient by Γ. Here are two such compactifications of X:

i) $\overline{X} = \Gamma \backslash \overline{D}$, the manifold-with-corners of Borel-Serre [3],

ii) $X^{Sa} = \Gamma \backslash D^{Sa}$, a Satake compactification of X [9] (see also [11]). There are finitely many Satake compactifications. When X is Hermitian, one of these is topologically the Baily-Borel compactification X^*, a projective variety over \mathbb{C} that is generally quite singular.

When X is Hermitian, there are also the smooth toroidal compactifications X^{tor} of Mumford et al. [1], constructed so that ∂X^{tor} is a divisor with normal crossings. It is not unique in general, but rather depends on certain combinatorial data.

A morphism $Y_1 \rightarrow Y_2$ of compactifications of X is the unique extension of the identity mapping of X, if it exists. For instance, for the three types of compactification above of a locally symmetric variety, there are morphisms

\[
X^{tor} \quad \downarrow
\]

\[
\overline{X} \rightarrow X^*.
\]

We see that X^* is a common quotient of \overline{X} and X^{tor}. In general, there is no morphism in either direction between \overline{X} and X^{tor}.

One might take as a criterion for a good compactification that a (locally) homogeneous vector bundle $E \rightarrow X$ should extend to the compactification. Extending
to \overline{X} is trivial, as \overline{X} is homotopy equivalent to X. It is wiser to take a quotient \overline{X}^red of \overline{X}, the reductive Borel-Serre compactification, which is defined as follows. The open faces of \overline{D} are of the form

$$e(R) \simeq D_R \times W_R,$$

with W_R the unipotent radical of R (real points). To get the open faces of \overline{D}^red, one collapses W_R to a point, yielding $e(R)^\text{red} \simeq D_R$. This is seen to define the reductive quotient \overline{X}^red of \overline{X}, a stratified compactification of X. The bundle extension $\overline{E}^\text{red} \rightarrow \overline{X}^\text{red}$ can be carried out by performing the Borel-Serre construction on the total space of E to produce $\overline{E} \rightarrow \overline{X}$, and then taking reductive quotients.

As for the extension of E to X^tor, this was done by Mumford [8], but we can alternatively take here the toroidal construction on the total space of E.

How different are \overline{X}^red and X^tor? There are two canonical notions (for compactifications of the same space): the greatest common quotient (GCQ) and the least common modification (LCM) [6]. These satisfy universal mapping properties:

$$
\begin{align*}
Y_1 \rightarrow & \quad \text{GCQ}(Y_1, Y_2) \leftarrow Y_2 \\
 & \quad Q \quad \ quartes
\[H^{\bullet}_{(\infty),gr}(X) \rightarrow H^{\bullet}_{(p),gr}(X) \simeq H^{\bullet}(X^{\text{tor}}) \quad (1 < p < \infty). \]

(The second line is different from the treatment in [8].) Furthermore, under the isomorphisms in the above, the Chern forms of an invariant connection map to the Chern classes of \(E^{\text{red}} \) and \(E^{\text{tor}} \) respectively.

Now is the time to bring in the excentric compactifications of \(X \). Let \(e(R) \) be, as before, the \(R \)-stratum of \(\overline{X} \) for the \(\mathbb{Q} \)-parabolic subgroup \(R \) of \(\mathcal{G} \), and let \(Z(R) \) denote the \(R \)-stratum of \(X^{\text{tor}} \). Both have an action of \(U_P \), the center of \(W_P \), when \(R \) is subordinate to \(P \); that means that \(P \) is the “smallest” maximal parabolic subgroup containing \(R \), and we have \(U_P \subseteq W_R \). In the toroidal case, the tori that occur are of the form \(T_P = \Gamma(U_P) \backslash U_P(\mathbb{C}) \). We take the quotients at the respective boundary strata,

\[D_R \times W_R \simeq e(R) \rightarrow e(R)^{\text{exc}} =: e(R)/U_P \simeq D_R \times (W_R/U_P), \]

(recall the opening paragraph) and \(Z(R) \rightarrow Z(R)/U_P \), obtaining the excentric compactifications \(\overline{X}^{\text{exc}} \) (with morphisms \(\overline{X} \rightarrow \overline{X}^{\text{exc}} \rightarrow \overline{X}^{\text{red}} \)) and \(X^{\text{tor,exc}} \) (a quotient of \(X^{\text{tor}} \)). The two excentric quotients are still different in general, but less so than \(\overline{X}^{\text{red}} \) and \(X^{\text{tor}} \). For instance, one can see rather easily that the corresponding strata of \(\overline{X}^{\text{exc}} \) and \(X^{\text{tor,exc}} \) are homotopy equivalent.

There are bundle extensions \(\overline{E}^{\text{exc}} \rightarrow \overline{X}^{\text{exc}} \) (the pullback of \(\overline{E}^{\text{red}} \)) and \(E^{\text{tor,exc}} \rightarrow X^{\text{tor,exc}} \) (which pulls back to \(E^{\text{tor}} \)). We have the following analogue of Prop. 1 and Conj. 1:

Proposition 2. i) In the canonical diagram

\[
\begin{array}{ccc}
\text{LCM}(\overline{X}^{\text{exc}}, X^{\text{tor,exc}}) & \xrightarrow{\beta} & X^{\text{tor,exc}} \\
\downarrow{\alpha} & & \\
\overline{X}^{\text{exc}} & & \\
\end{array}
\]

both projections \(\alpha \) and \(\beta \) are homotopy equivalences.

ii) Let \(k : X^{\text{tor,exc}} \rightarrow \overline{X}^{\text{exc}} \) be the mapping defined by composing \(\alpha \) with a homotopy inverse to \(\beta \) in i). Then \(k^{*}E^{\text{exc}} \simeq E^{\text{tor,exc}} \).

Corollary. Conjecture 1 is true.

The corollary is an immediate consequence of (ii) in Prop. 2. We give some indication of the proof of Prop. 2 [13] in the following outline:

1. The proof of the assertion in (i) about \(\beta \) goes, more or less, like the argument in [4] (for (ii) in Prop. 1 above). We show that \(\beta \) has contractible fibers.
2. From (*), we get

\[X^\text{tor,exc} \rightarrow X^\text{exc} \rightarrow X^*. \]

The problem of determining the fibers of \(\beta \) fibers over \(X^* \). This brings in partial compactifications of homogeneous cones, and then the duality noted in [5.§2.3].

3. The means for deducing the assertion in (i) about \(\alpha \) goes under the name LCM-basechange. This is a rather simple notion. Suppose that \(Y_1 \rightarrow Y_2 \) is a morphism of compactifications of a space \(X \), and that \(Y_3 \) is a third compactification of \(X \). It is easy to see that one has an inclusion

\[\text{LCM}(Y_1, Y_3) \subseteq Y_1 \times_{Y_2} \text{LCM}(Y_2, Y_3). \]

We say that LCM-basechange holds in the given situation if the inclusion is an equality. In that case, the projections \(\text{LCM}(Y_1, Y_3) \rightarrow Y_1 \) and \(\text{LCM}(Y_2, Y_3) \rightarrow Y_2 \) have the same fiber.

4. Statement (ii) is verified directly.

References

