1. If \(p \) is the characteristic of a field \(F \), we want to show \(p \) is a prime. Let’s prove by contradiction. If \(p \) is not a prime, then \(p \) is a product of two integers \(m \) and \(n \), i.e., \(p = mn \), and \(1 < m < p, 1 < n < p \). By the definition of characteristic of a field, we have \(p = 0 \) in the field \(F \). Therefore, \(p = mn = 0 \). We get \(m = 0 \) or \(n = 0 \) since if \(m \neq 0 \), then, by law 7 in the definition of a field, we have \(n = (m^{-1}m)n = m^{-1}0 = 0 \). It is no harm to assume \(m = 0 \). Notice that \(m < p \) and \(m = 0 \). Contradiction to \(p \) is the least number in \(F \) such that \(p = 0 \).

2. Let \(F = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\} \). \(F \) is a field. To prove \(F \) is a field. We need to verify \((F, +, \cdot)\) satisfy the definition of field. That is, verify \((F, +, \cdot)\) satisfies 9 laws of the definition.

It’s easy to verify all laws except law 8. For a nonzero element \(x = a + b\sqrt{2} \in F \), we need to show there exists an inverse \(x^{-1} \) of \(x \), such that \(xx^{-1} = 1 \). Let \(x^{-1} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2} \). We can verify that \(xx^{-1} = 1 \). The only problem here is to mention that our definition of \(x^{-1} \) is well defined if \(x \) is nonzero. In other words, we need to verify \(a^2 - 2b^2 \neq 0 \) if \(a, b \neq 0 \) (\(x \neq 0 \) means \(a \neq 0 \) or \(b \neq 0 \)). This is because \(a \) and \(b \) are rational numbers. We can assume \(a = \frac{m}{n}, b = \frac{t}{s} \), where \(m, n, s, t \in \mathbb{Z} \) and \(\text{g.c.d.}(m, n) = \text{g.c.d.}(s, t) = 1 \). So if \(a^2 - 2b^2 = 0 \), we can get \(m^2t^2 = 2n^2s^2 \). By counting the prime factors of \(m^2t^2 \) and \(2n^2s^2 \), we found it could not be true when \(m, n, s, t \) are integers.

3. If matrices \(A \) and \(B \) are row equivalent, we want to show \(A \) and \(B \) have the same row-reduced echelon matrix.

By the corollary in page 23, let \(A \) and \(B \) be \(m \times n \) matrices. Then \(B \) is row-equivalent to \(A \) if and only if \(B = PA \) where \(P \) is an invertible \(m \times m \) matrix.

In our problem, since \(A \) and \(B \) are row equivalent, there is an invertible matrix \(P \), such that \(B = PA \). Assume \(R \) is the row-reduced echelon matrix of \(A \), then \(R \) and \(A \) are row equivalent. So there is an invertible matrix \(Q \) such that \(R = QA \). Therefore, \(R = QA = QP^{-1}B \). This means that \(B \) and \(R \) are row equivalent. Since a matrix has a unique row-reduced echelon matrix. So \(R \) is the echelon matrix of \(B \) as well.

If \(A \) is invertible, then \(A^{-1}A = I \). By the corollary above, we get the row-reduced echelon matrix of \(A \) is the identity matrix \(I \).

4. a) Use the same method of Example 16 in textbook page 25. We can get the inverse matrix is

\[
\begin{pmatrix}
13/24 & -5/24 & -1/4 & 1/6 \\
-3/8 & 3/8 & 1/4 & -1/2 \\
-19/24 & 11/24 & -1/4 & -1/6 \\
-1/4 & 1/4 & 1/2 & 0
\end{pmatrix}
\]

b) The solutions are \(x_1 = -\frac{3}{4}c_4 - \frac{39}{4}c_5 + \frac{12}{7}, x_2 = \frac{8}{5}c_4 + \frac{2}{5}c_5 + \frac{22}{7}, x_3 = \frac{8}{5}c_4 - \frac{35}{4}c_5 + \frac{20}{7}, x_4 = c_4, x_5 = c_5 \), where \(c_4, c_5 \) are arbitrary numbers.

5. Let a \(n \times n \) matrix \(A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \). Define the trace of \(A \) by sum of the diagonal entries, i.e., \(\text{Tr}(A) = \sum_{i=1}^{n} a_{ii} \).

We can verify that \(\text{Tr}(AB - BA) = 0 \), but \(\text{Tr}(I) = n \neq 0 \). So there are no such matrices \(A \) and \(B \) over rational number field.

6. a) Let \(A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \);

b) Let \(A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \);

c) Let \(A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \).
7. The second statement comes from the corollary in textbook page 24.

Since $AB = I$, by the second statement, we have A and B are invertible. Since $AB = I$, we times B from left and get $BAB = BI = B$. And we times B^{-1} from right and get $BABB^{-1} = BB^{-1} = I$. And $BABB^{-1} = BA(BB^{-1}) = BA$. Hence we get $BA = I$.

8. The answer is $(7^2 - 1)(7^2 - 7) = 48 \times 42 = 2016$. First row of the matrix couldn’t be 0, so there are $7^2 - 1$ choices. Second row couldn’t be linear dependent with the first row, so there are $(7^2 - 7)$ choices. Therefore, in total, there are $(7^2 - 1)(7^2 - 7) = 48 \times 42 = 2016$ 2×2 matrices over the finite field of 7 elements.