1. a) Suppose \(\text{dim} V = n, \{ v_1, \ldots, v_m \}, m > n \) is a collection of vectors in \(V \). Suppose the coordinates of \(v_i = (a_{i1}, \ldots, a_{in}), i = 1, \ldots, m \), then \(k_1v_1 + \ldots + k_nv_m = 0 \) corresponds a linear system

\[
\begin{pmatrix}
a_{11} & a_{21} & \cdots & a_{m1} \\
a_{12} & a_{22} & \cdots & a_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
k_1 \\
k_2 \\
\vdots \\
k_m
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}
\]

Since the number of equations, which is \(n \), is less than the number of unknowns, which is \(m \), we have the homogeneous system must have non-trivial solutions. That is, there exists a non-zero solution \(k_1, \ldots, k_m \). So \(\{ v_1, \ldots, v_m \} \) are linearly dependent.

b) \(T \) is injective means \(T \) is one-to-one when \(T \) is viewed as a map. Since \(T \) is linear, we get \(T(0) = 0 \), that is, \(0 \in \ker T \). Since \(T \) is injective, we have \(\ker T = \{ 0 \} \).

On the other hand, if \(\ker T = \{ 0 \} \), and \(T(v_1) = T(v_2) \), then \(T(v_1 - v_2) = T(v_1) - T(v_2) = 0 \) since \(T \) is linear. So \(v_1 - v_2 \in \ker T \). By assumption, \(\ker T = \{ 0 \} \). So \(v_1 - v_2 = 0 \), i.e., \(v_1 = v_2 \). So \(T \) is injective.

Let \(n = \text{dim} V = \text{dim} W \) and \(\{ e_1, \ldots, e_n \} \) be a basis of \(V \).

If \(T \) is injective. Claim \(\{ T(e_1), \ldots, T(e_n) \} \) is a basis of \(W \). Since \(\text{dim} W = n \), we only need to show \(\{ T(e_1), \ldots, T(e_n) \} \) is linearly independent. Indeed, if \(k_1T(e_1) + k_2T(e_2) + \ldots + k_nT(e_n) = 0 \), then \(T(k_1e_1 + k_2e_2 + \ldots + k_ne_n) = 0 \). So \(k_1e_1 + k_2e_2 + \ldots + k_ne_n \in \ker T \). Since \(\ker T = \{ 0 \} \), we have \(k_1e_1 + k_2e_2 + \ldots + k_ne_n = 0 \). And \(\{ e_1, \ldots, e_n \} \) are linearly independent, so \(k_1 = k_2 = \ldots = k_n = 0 \). That is \(\{ T(e_1), \ldots, T(e_n) \} \) are linearly independent. Hence \(\text{dim} \text{Im} T \geq n \). And since \(\text{Im} T \) is a subspace of \(W \) and they have same dimension. \(\text{dim} T = W \), i.e., \(T \) is surjective.

On the other hand. If \(T \) is surjective, i.e., \(\text{Im} T = W \). If \(\ker T \neq \{ 0 \} \), then there exists a nonzero vector \(v \in \ker T \). So we can extend it to a basis of \(V \), say \(\{ e_1 = v, e_2, \ldots, e_n \} \). Since \(\text{Im} T \) is spanned by \(T(e_2), \ldots, T(e_n) \), we get \(\text{dim} \text{Im} T \) at most \(n - 1 \). So \(T \) cannot be surjective. Contradiction! So \(\ker T = \{ 0 \} \), i.e., \(T \) is injective.

If \(T \) is a linear transformation, and, as a map, \(T \) is one-to-one and onto, we want to show \(T^{-1} \) is a linear transformation as well. For every vector \(w \in W \), since \(T \) is surjective and injective, there exists a unique vector \(v \in V \), such that \(T(v) = w \). Define \(T^{-1}(w) = v \). Under this definition, we want to show \(T^{-1} \) is linear, i.e., \(T^{-1}(cv_1 + w_2) = cT^{-1}(w_1) + T^{-1}(w_2) \) for any \(w_1, w_2 \in W, c \in F \). Indeed, assume \(T(v_1) = w_1 \) and \(T(v_2) = w_2 \). So \(T(cv_1 + v_2) = cw_1 + w_2 \), i.e., \(T^{-1}(cw_1 + w_2) = cv_1 + v_2 \). Moreover, \(cT^{-1}(w_1) + T^{-1}(w_2) = cv_1 + v_2 \). So \(T^{-1} \) is linear.

c) It is easy to check \(\text{Im} T \) is a subspace of \(W \) by the definition of subspace. \(V/\ker T \) consists of elements \(v + \ker T, \forall v \in V \). Let \(\varphi : V/\ker T \rightarrow W \) by \(\varphi(v + \ker T) = T(v) \). \(\varphi \) is well defined since \(\varphi(v + \ker T) = T(v) = T(v') = \varphi(v' + \ker T) \) if \(v, v' \) are in the same class \(v + \ker T \). Indeed, if \(v, v' \) are in the same class \(v + \ker T \), then \(v - v' \in \ker T \). So \(T(v) = T(v') \). Second, we need to show \(\varphi \) is linear. This is easy from the definition. Third, we need to show \(\varphi \) is one-to-one and onto. Onto is clear. If \(\varphi(v + \ker T) = T(v) = 0 \). Then \(v \in \ker T \). So \(v + \ker T \) is the zero element in the quotient vector space \(V/\ker T \).

d) Let \(S \) consists of all elements \(v \), such that \(T(v) = w \). Since \(T(v_0) = w \), we can easily see that \(v_0 + \ker T \subset S \). On the other hand, if \(v' \in S \), then \(T(v') = T(v) \). So \(T(v - v') = 0 \), that is \(v - v' \in \ker T \). Therefore, \(v' \in v + \ker T \).

e) Let \(\{ e_1, \ldots, e_k \} \) is a basis of \(ker T \), then it can be extended to a basis of \(V \), say \(\{ e_1, \ldots, e_k, e_{k+1}, \ldots, e_n \} \), where \(n = \text{dim} V \). Then \(\{ T(e_{k+1}), \ldots, T(e_n) \} \) spans \(\text{Im} T \). And actually \(\{ T(e_{k+1}), \ldots, T(e_n) \} \) is linearly independent. Otherwise, there exists nonzero \(a_{k+1}, \ldots, a_n \) such that \(a_{k+1}T(e_{k+1}) + \ldots + a_nT(e_n) = 0 \). So \(a_{k+1}e_{k+1} + \ldots + a_ne_n \in \ker T \). Since \(\{ e_1, \ldots, e_k \} \) is a basis of \(ker T \), we have \(a_{k+1}e_{k+1} + \ldots + a_ne_n = a_1e_1 + \ldots + a_ke_k \). And we get \(a_1 = a_2 = \ldots = a_k = a_{k+1} = \ldots = a_n = 0 \) since \(\{ e_1, \ldots, e_k, e_{k+1}, \ldots, e_n \} \) is linearly independent. Contradiction! So \(\text{dim} ker T = k \) and \(\text{dim} \text{im} T = n - k \), Therefore, \(\text{dim}(\ker T) + \text{dim}(\text{Im} T) = k + (n - k) = n = \text{dim} V \).

For any subspace \(U \) of \(V \), we can construct a linear transformation \(T \), such that \(\ker T = U \). For instance, let \(\{ e_1, \ldots, e_k \} \) be a basis of \(U \), and extend it to be a basis \(\{ e_1, \ldots, e_k, e_{k+1}, \ldots, e_n \} \) of \(V \). Let
$T(e_1) = \ldots = T(e_k) = 0$ and $T(e_{k+1}) = \ldots = T(e_n) = 1$. Then $\ker T = U$. So we have $\dim V = \dim \ker T + \dim (\text{Im} T) = \dim U + \dim (V/\ker T) = \dim U + \dim (V/U)$.

If $\dim V > \dim W$, then $\dim \ker T = \dim V - \dim W > 0$. So $\ker T \neq 0$.

2. ker $L = \{(a_1,0,0,\ldots)\}, a_1 \in \mathbb{R}$. Im $L = V$ since every sequence (b_1,b_2,\ldots) is the image of $(1,b_1,b_2,\ldots)$.

ker $R = 0$, but Im $R \neq V$ since the first entry of the sequence in Im R is 0.

3. a) Couldn’t. Since $\dim U > \dim V$, we have ker $S \neq 0$, i.e., S is not injective. However, if TS is invertible, S has to be injective.

b) Follows from the definition of matrix of a linear transformation with respect to the base directly. (Theorem 13 in the textbook page 90)

4. a) Let

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 0 & -1 \\ -1 & -2 & 0 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

Then the matrix of T with respect to the basis $(0,1,-1),(1,-1,1),(-1,1,0)$ is

$$P^{-1}AP = \begin{pmatrix} 3 & -1 & 1 \\ 1 & 0 & 0 \\ -1 & 2 & -3 \end{pmatrix}.$$

b) Let

$$A = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}.$$

If A and B are similar, then there exists an invertible matrix $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, such that $B = P^{-1}AP$, i.e., $AP = PB$. So we get

$$AP = \begin{pmatrix} 6 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 6a & 6b \\ -c & -d \end{pmatrix} = PB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix} = \begin{pmatrix} a + 5b & 2a + 4b \\ c + 5d & 2c + 4d \end{pmatrix}$$

So we get a linear system about a,b,c,d, by comparing the corresponding entries,

$$\begin{cases} 6a = a + 5b \\ 6b = 2a + 4b \\ -c = c + 5d \\ -d = 2c + 4d \end{cases}$$

There are infinitely many solutions. We can take $P = \begin{pmatrix} 1 & 5 \\ 1 & -2 \end{pmatrix}$.

5. a) By computation, we get $T(1) = 12, T(X) = 6X, T(X^2) = 2X^2, T(X^3) = 0, T(X^4) = 0, T(X^5) = 2X^5$. So the matrix M_4 of D respect to the basis $\{1,X,X^2,X^3,X^4,X^5\}$ is

$$M_4 = \begin{pmatrix} 12 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

By computation, we get

$T(1) = 12,$

$T(1 + X) = 6X + 12 = 6 + 6(1 + X),$

$T(1 + X + X^2) = 2X^2 + 6X + 12 = 6 + 4(1 + X) + 2(1 + X + X^2),$

$T(1 + X + X^2 + X^3) = T(1) + T(X) + T(X^2) + T(X^3) = 2X^2 + 6X + 12 = 6 + 4(1 + X) + 2(1 + X + X^2),$

$T(1 + X + X^2 + X^3 + X^4) = 2X^2 + 6X + 12 = 6 + 4(1 + X) + 2(1 + X + X^2),$

$T(1 + X + X^2 + X^3 + X^4 + X^5) = 2X^5 + 2X^2 + 6X + 12$

$= 6 + 4(1 + X) + 2(1 + X + X^2) - 2(1 + X + X^2 + X^3 + X^4) + 2(1 + X + X^2 + X^3 + X^4 + X^5).$
So the matrix M_2 of D respect to the basis $\{1, 1 + X, 1 + X + X^2, 1 + X + X^2 + X^3, 1 + X + X^2 + X^3 + X^4, 1 + X + X^2 + X^3 + X^4 + X^5\}$ is

$$
M_2 = \begin{pmatrix}
12 & 6 & 6 & 6 & 6 \\
0 & 6 & 4 & 4 & 4 \\
0 & 0 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}
$$

b) From a), we can see that $\{X^3, X^4\}$ is a basis of $\text{ker} \, D$ and $\{1, X, X^2, X^5\}$ is a basis of $\text{Im} \, D$.

6) Since $\{a_n\}$ is a convergent sequence, we can see that $b_n = a_n - \lim_{m \to \infty} a_m$ is a convergent sequence as well and its limit is 0. So $\text{Im} \, T$ consists of all limit 0 sequences in V, i.e., $\text{Im} \, T = \{(a_1, a_2, \ldots) | \lim_{m \to \infty} a_n = 0\}$.

For any two convergent sequences $\{a_n\}, \{a_n'\}, c \in F$,

$$
T(c\{a_n\} + \{a_n'\}) = T(c\{a_n + a_n'\}) = \{ca_n + a_n' - \lim_{m \to \infty} (ca_m + a'_m)\} = c\{a_n - \lim_{m \to \infty} a_m\} + \{a_n' - \lim_{m \to \infty} a'_m\} = cT(\{a_n\}) + T(\{a_n'\})
$$

So T is linear.

Note that $(0, 0, 0, \ldots)$ is the zero element in V. So $\text{ker} \, T = \{(a, a, a, \ldots) | a \in F\}$.

7. a) Let $\{e_1, \ldots, e_k\}$ be a basis of $\text{Im} \, T$. And $\{e_1^*, \ldots, e_k^*\}$ be its dual, i.e., $e^*_i(e_j) = \delta_{ij}, i, j = 1, \ldots, k$. Then $T^*(e^*_1), \ldots, T^*(e^*_k) \in \text{Im} \, T^* \subset V^*$. Now we are trying to show $\{T^*(e^*_1), \ldots, T^*(e^*_k)\}$ is linear independent in $\text{Im} \, T^*$. If $a_1 T^*(e^*_1) + \ldots + a_k T^*(e^*_k) = 0$, then for any $v \in V$,

$$
(a_1 T^*(e^*_1)(v) + \ldots + a_k T^*(e^*_k)(v)) = a_1 T^*(e^*_1)(v) + \ldots + a_k T^*(e^*_k)(v) = a_1 e_1^*(T(v)) + \ldots + a_k e_k^*(T(v)) = 0.
$$

Since the equality is true for any $v \in V$, we can choose v_1, \ldots, v_k, such that $e_i = T(v_i), i = 1, \ldots, k$ (notice that $\{e_i\}$ is in the image of T). Plug in $v_i, i = 1, \ldots, k$ in the equality, we get $a_1 = \ldots = a_k = 0$. Hence $\{T^*(e^*_1), \ldots, T^*(e^*_k)\}$ is linear independent in $\text{Im} \, T^*$. So we have $\dim(\text{Im} \, T^*) \geq \dim(\text{Im} \, T)$. Similarly, we have $\dim(\text{Im} \, T^{**}) \geq \dim(\text{Im} \, T^*)$. Indeed, let $S = T^*$, and use the same argument above.

By theorem 23 in the textbook page 113, if A is the matrix of T relative to $\mathcal{B}, \mathcal{B}'$, where \mathcal{B} is a basis of V and \mathcal{B}' is a basis of W, then the matrix of T^* relative to the dual basis $\mathcal{B}^{**}, \mathcal{B}'^*$ of $\mathcal{B}, \mathcal{B}'$ is the transpose A^t of A.

So $(A^t)^t = A$ is the matrix of T^{**} relative to the basis $\mathcal{B}^{**}, \mathcal{B}'^{**}$. Therefore,

$$
\dim(\text{Im} \, T^{**}) = \text{column rank}(A) = \dim(\text{Im} \, T).
$$

So we have $\dim(\text{Im} \, T^{**}) \geq \dim(\text{Im} \, T^*) \geq \dim(\text{Im} \, T)$ and $\dim(\text{Im} \, T^{**}) = \dim(\text{Im} \, T)$. Hence $\dim(\text{Im} \, T^*) = \dim(\text{Im} \, T)$.

b) From a), we have $\dim(\text{Im} \, T^*) = \dim(\text{Im} \, T)$. And apply theorem 23 in the textbook page 113, we get

$$
\text{column rank}(A) = \text{rank}(T) = \dim(\text{Im} \, T) = \dim(\text{Im} \, T^*) = \text{rank} T^* = \text{column rank}(A^t) = \text{row rank}(A).
$$

8. Assume $\text{Im} \, T$ and $\text{ker} \, T$ are both finite dimensional. Let $\{v_1, \ldots, v_k\}$ be a basis of V. And it can be extended to a basis \mathcal{B} of V. Since V is infinite dimensional, we have $\mathcal{B} \setminus \{v_1, \ldots, v_k\}$ is infinite. And we can see that $\text{Im} \, T$ is spanned by the images of $\mathcal{B} \setminus \{v_1, \ldots, v_k\}$ (see of proof of problem 1). By our assumption, $\text{Im} \, T$ is finite dimensional, so there exist $v_{k+1}, \ldots, v_m \in \mathcal{B} \setminus \{v_1, \ldots, v_k\}$ such that $T(v_{k+1}), \ldots, T(v_m)$ are linear dependent. So there exist nonzero a_{k+1}, \ldots, a_m, such that $a_{k+1}T(v_{k+1}) + \ldots + a_mT(v_m) = 0$. So we get $a_{k+1}v_{k+1} + \ldots + a_mv_m \in \text{ker} \, T$. So it can be represented by the basis of $\text{ker} \, T$, i.e., $a_{k+1}v_{k+1} + \ldots + a_mv_m = a_1v_1 + \ldots + a_kv_k$. However, since $v_1, \ldots, v_k, v_{k+1}, \ldots, v_m$ is a part of basis, they are linearly independent. So $a_1 = a_2 = \ldots = a_k = a_{k+1} = \ldots = a_m = 0$. Contradicts to a_{k+1}, \ldots, a_m are not all zero.