Section 1.2.3. Exercises.

1. To prove such proposition “· · · is either A or B”, the standard way is to prove that if it is not A, then it is B.

 Let S be a subset of \(\mathbb{N} \), where \(\mathbb{N} \) denotes the natural numbers. If S is not a finite set, we want to show S is countable.

 Proof I. (using the ordering of \(\mathbb{N} \))

 Least-integer principle: Every non-empty set of natural numbers has a least number.

 Since S is not a finite set, S must be an infinite set, and thus S is nonempty in \(\mathbb{N} \). By Least-integer principle, suppose \(a_1 \in S \) is the least element. Now we consider \(S \setminus \{ a_1 \} \). Since S is infinite, \(S \setminus \{ a_1 \} \) is an infinite subset in \(\mathbb{N} \). Again by Least-integer principle, there is a least element \(a_2 \in S \setminus \{ a_1 \} \). Keep going, we can enumerate S by ordering, i.e.,

 \[S = \{ a_1, a_2, \ldots \} , \]

 where \(a_i \) is the least element in \(S \setminus \{ a_1, a_2, \ldots, a_{i-1} \} \).

 Proof II. (using Cantor-Berstein-Schroeder’s Th)

 Suppose S is an infinite subset of \(\mathbb{N} \). Then we have a natural inclusion \(f : S \rightarrow \mathbb{N} \), which is one-to-one. By the fact that any infinite set contains a countable subset (the proof is in course notes 2), S has a countable subset \(E \), since S is infinite. So we have a one-to-one map \(g : E \sim E \rightarrow S \). By Cantor-Berstein-Schroeder’s Th, \(S \sim \mathbb{N} \).

2. The set of all finite subsets of \(\mathbb{N} \) is countable.

 Proof. Let \(A_i \) be the set of subsets of \(\mathbb{N} \) consisting of \(i \) elements, \(A \) the set of all finite subsets of \(\mathbb{N} \). Then \(A \) is a disjoint union of \(A_i \), i.e.,

 \[A = \bigcup_{i=0}^{\infty} A_i. \]

 Since there is a natural onto map \(f : \mathbb{N} \times \cdots \times \mathbb{N} \) (cross products \(i \) times) \(\rightarrow \mathbb{N}((a_1, a_2, \ldots, a_i) \mapsto \{ a_1, a_2, \ldots, a_i \} \), we get \(A_i \) is countable for \(i > 0 \) by the simple Lemma in page 9 (Simple Lemma: if there is a mapping of the natural numbers onto a set \(U \), then \(U \) is either finite or countable. You can use Exercise 1 to prove the lemma. Try to make it.). So \(A = \bigcup_{i=0}^{\infty} A_i \) is countable.

3. Let \(\mathbb{Q}_+ \) be the set of all positive rational numbers, \(\mathbb{Q}_- \) the set of all negative rational numbers. So \(\mathbb{Q} = \mathbb{Q}_+ \cup \mathbb{Q}_- \cup \{0\} \). Define a map \(f : \mathbb{N} \times \cdots \times \mathbb{N} \rightarrow \mathbb{Q}_+ \) by \(f(p, q) = p/q \). Then we can verify that \(f \) is onto. Indeed, every positive rational number has form \(p/q \) for some natural numbers \(p \) and \(q \). Since \(\mathbb{N} \) is countable, \(\mathbb{N} \times \cdots \times \mathbb{N} \) is countable as well (see the example in page 10 textbook). Since \(f \) is onto, we get \(\mathbb{Q}_+ \) is countable by the simple lemma in page 9.

 Since \(\mathbb{Q}_- \sim \mathbb{Q}_+ \) (check the map \(g : \mathbb{Q}_+ \rightarrow \mathbb{Q}_- \) by \(g(r) = -r, r \in \mathbb{Q}_+ \) is one-to-one and onto), we get \(\mathbb{Q}_- \) is countable as well. Hence \(\mathbb{Q} = \mathbb{Q}_+ \cup \mathbb{Q}_- \cup \{0\} \) is countable (countable union a finite set is countable. See the next problem for a proof).

4. Let \(A \) be an uncountable set, \(U \) a countable subset of \(A \). Let \(V = A \setminus U \). Then \(V \) is uncountable. Indeed, we can prove by contradiction.

 If \(V \) is not uncountable, then \(V \) is either finite or countable. If \(V \) is finite, \(V = \{ a_1, \ldots, a_n \} \). Since \(U \) is countable, assume \(U = \{ b_1, b_2, b_3, \ldots \} \). Then \(A = U \cup V = \{ a_1, \ldots, a_n, b_1, b_2, b_3, \ldots \} \) is countable. It contradicts to the assumption that \(A \) is uncountable. If \(V \) is countable, then \(A = U \cup V \) is countable. Indeed, there is a one-to-one and onto map \(f : U \rightarrow \mathbb{N} \). Similarly, there
is a one-to-one map \(g : V \rightarrow \mathbb{Z}_{\leq 0} \), where \(\mathbb{Z}_{\leq 0} \) denotes all non-positive integers (notice that \(\mathbb{Z}_{\leq 0} \) is countable). So \(\alpha : U \cup V \rightarrow \mathbb{Z} \) by

\[
\alpha(x) = \begin{cases}
 f(x) & x \in U \\
 g(x) & x \in V
\end{cases}
\]

We can easily verify that \(\alpha \) is one-to-one and onto (notice that \(U \cap V = \emptyset \), so \(\alpha \) is well defined). Hence \(U \cap V \) is countable. Contradiction!

5. We want to show that \(A_1 \times A_2 \times \cdots \) is uncountable if each \(A_i \) is countable, or more generally if each \(A_i \) has at least two elements.

We are going to show the second proposition. Since each \(A_i \) has at least two elements, we can suppose \(a_i, b_i \) are two distinct elements in \(A_i \). Construct a map \(f : 2^\mathbb{N} \rightarrow A_1 \times A_2 \times A_3 \times \cdots \) by \(f(S) = (x_1, x_2, \ldots) \), where \(x_i \) is defined by

\[
x_i = \begin{cases}
 a_i, & i \in S \\
 b_i, & i \notin S
\end{cases}
\]

and \(S \) is an arbitrary subset of \(\mathbb{N} \). It is easy to see that \(f \) is one-to-one. So \(A_1 \times A_2 \times \cdots \) is uncountable. Otherwise \(A_1 \times A_2 \times \cdots \) is finite or countable, and so is the subset \(2^\mathbb{N} \) by Exercise 1. Contradiction!

6. Let \(A_k \) be the subset of \(A \) given by the solutions to \(f(a) = k \) (people always use \(f^{-1}(k) \) to denote the set). Then \(A \) is the disjoint union of \(A_k \), i.e. \(A = \bigcup_{k=1}^{\infty} A_k \). If \(A \) is not finite, then \(A_k \neq \emptyset \) for infinity many \(k \) because \(A_k \) is finite by assumption. So \(A \) is a subset of \(\bigcup_{k=1}^{\infty} N_k \), where each \(N_k \sim \mathbb{N} \) but none of them intersect. We know that \(\bigcup_{k=1}^{\infty} N_k \) is countable. By Exercise 1, we get \(A \) is countable as well.

7. See the course notes for the proof. (diagonalization argument)

Extra Problem. Show that \(\mathbb{N}^\mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \cdots \sim \mathbb{R} \).

Proof. Since \(\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \cdots \sim \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \cdots \), we get \(\mathbb{R} \) is a subset of \(\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \cdots \) and therefore \(\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \cdots \) by the definition of real numbers. On the other hand, we can associate every sequence of natural numbers to a real number. Let \((a_1, a_2, a_3, \ldots) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \cdots \) is a sequence of natural number. Then it can be associate to a real number (decimal expression) \(0.0 \cdots 0/0/0 \cdots 01 \cdots \) (first has \(a_1 \) 0s, then 1 then \(a_2 \) 0s then 1). For example, sequence \((1, 2, 3, 0, 1, 0, \ldots) \) corresponds to \(0.01001000101\ldots \). The map we defined is one-to-one. So we get \(\mathbb{N}^\mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \cdots \sim \mathbb{R} \).