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Abstract 

We prove that viscosity solutions in W 1'~176 of the second order, fully nonlinear, 
equation F(D2u, Du, u) = 0 are unique when (i) F is degenerate elliptic and de- 
creasing in u or (ii) Fis  uniformly elliptic and nonincreasing in u. We do not assume 
that F is convex. The method of proof  involves constructing nonlinear approxima- 
tion operators which map viscosity subsolutions and supersolutions onto viscosity 
subsolutions and supersolutions, respectively. This method is completely different 
from that used in LIoNs [8, 9] for second order problems with F convex in DEu 
and from that used by CRANDALL & LIONS [3] and CRANDALL, EVANS & LIONS 
[2] for fully nonlinear first order problems. 

O. Introduction 

This paper considers the uniqueness of solutions of nonlinear second order 
elliptic partial differential equations, 

F(D2u, Du, u, x) = 0 in ~ ;  (0.1) 

with Dirichlet boundary condition 

u = g on ~12. (0.2) 

We implicitly assume throughout this paper that ~2 is a bounded domain in R", 
g is continuous on ~f2, and solutions of (0.1) and (0.2) are always in C(s Unique- 
ness for such problems depends both on the properties of the function F and 
on the space in which solutions are taken. For example, it is easily shown by use 
of the classical maximum principle that if F is C 1, uniformly elliptic, and decreasing 
in u, then all solutions of (0.1) and (0.2) in C2(12) are equal. The primary deficiency 
in this result is the assumption that solutions are in C2(32). The best general exist- 
ence and regularity theorems of which I am aware yield solutions of  (0.1) and 
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(0.2) in C2(O) only under the additional assumption that F is convex (or concave) 
in D2u (see L. C. EVANS [6], for example). Another deficiency in the previous unique- 
ness result is the regularity imposed on F. An improved uniqueness theorem 
can be achieved by using the extension of  the classical maximum principle in 
J. M. BONY [1], whence it follows that if F is Lipschitz continuous, uniformly 
elliptic, and decreasing in u, then all solutions of (0.l) and (0.2) in W2'p(O) are 
equal. This result is still restrictive. Until recently, however, the most general 
definition of solution of (0.1) for fully nonlinear F, i.e., for F nonlinear in D2u, 
required that the solution have two Sobolev derivatives and that (0.1) hold almost 
everywhere. The difficulty in broadening the concept of solution in the way it is 
usually done for linear equations is that for fully nonlinear F's it is generally im- 
possible to integrate F(D2u, Du, u, x ) .  q~(x) by parts and remove the derivatives 
of u from the resulting integral. Consequently, a new approach to the idea of 
weak solution for (0.1) is required. 

In 1983 M. G. CRANDALL t~ P. L. LIONS [3] introduced the definition of 
viscosity solution as a notion of weak solution for nonlinear first order partial 
differential equations, 

H(Du, u, x) ---- 0 in ~2. (0.3) 

Under assumptions more general than previously known, they were able to esta- 
blish global uniqueness and existence of viscosity solutions. Further, they showed 
that classical solutions are always viscosity solutions. A closely related idea had 
appeared several years earlier. In L. C. EVANS [4] and [5] an L ~~ Minty technique 
was developed. This technique was (in another guise) an implicit use of the de- 
fining property of viscosity solutions. Finally in P.-L. LIONS [8] the definition 
of  viscosity solution was extended to second order problems, i.e., to (0.1). Under 
some assumptions of regularity on F, which include convexity, it was proved that 
viscosity solutions are unique. In fact, what P.-L. LIONS actually proved is that 
the viscosity solution is the value function for some associated stochastic optimi- 
zation problem. 

In this paper we prove a maximum principle for viscosity solutions which im- 
plies the following theorem. 

Theorem. I f  F is cont&uous, does not depend on x, and either 
(i) F is degenerate elliptic and uniformly decreasing in u 

o r  

(ii) F is uniformly elliptic and nonincreasing in u 
then all viscosity solutions of  (0.1) and (0.2) in W1'~(O) are equal. 

The only other uniqueness theorems I know of  are given in P.-L. LIONS [8] and 
[9]. Next, we compare the present result with those in [8] and [9]. Both [8] and 
[9] make the assumptions that F is convex (or concave) in (D2u, Du, u) and that 
F grows linearly in (D2u, Du, u). These assumptions appear to be necessary for 
the method of proof employed there. Additionally both [8] and [9] assume that 
F is uniformly decreasing in u, which is crucial for degenerate elliptic F's but prob- 
ably not necessary if F is uniformly elliptic. Finally both [8] and [9] assume a 
technical condition which is closely related to having ( F(D2u, Du, u, x) - F(O, O, O, x) ) 
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uniformly Lipschitz continuous. On the other hand, spatial dependence in F 
is allowed in [8] and [9]. Our approach, however, does not allow spatial dependence 
in x although several subsequent papers by different authors on this are now in 
varying degrees of  preparation. Furthermore, the results in [8] apply to all con- 
tinuous viscosity solutions not just those in Wl,~(12) (this, however, does require 
additional regularity of  F). 

The techniques we use in this paper are new and novel. So far, all attempts 
to use modifications of  the techniques in [3] to prove general uniqueness results 
for (0.1) and (0.2) have failed. A heuristic analysis of the techniques in [3] suggests 
that they are inherently inadequate for second order problems. I f  w and v are two 
viscosity solutions of (0.3), the maximum of  v - w is studied in [3] with the aid 
of  the auxiliary function 

I x - y [  2 
Q'(x,  y) = v(x) - w(y) - - ,  (0.4) 

8 

I f  (x,, y,) are points where the maximum of Q~ occurs and if (x,i, Y~i) '+ (Xo, Yo) 

for a sequence ei ~ 0, then Xo ---- Yo and v - w has a maximum at Xo. The basic 
idea in [3] is to use the definition of viscosity solution and the auxiliary function, 
Q", to preserve the information that is carried in Dv(x)  and Dw(x)  when v and w 
are smooth. In fact, if  v and w are smooth then Dv(x,) = Dw(y~) and conse- 
quently for a sequence ei ~ 0 such that (x, e ysi ) ~ (Xo, Xo) we see Dv(xo) = 

Dw(xo)  (a fact which also follows from knowing that v - w has a maximum 
at Xo). Unfortunately, the appropriate information from the second derivatives 

2 
is not carried by Q'. All that we can conclude is that D2v(x,) - D2w(y,)  - ~ I 

8 

is negative semidefinite. For  sequences ei "x 0 and (x, i, Y'i) "-+ (Xo, Xo) we obtain 

no information about Dav(xo) - DZw(xo) from the Q%. My opinion is that the 
techniques of  [3] cannot be adapted because they study the structure of the viscosity 
solutions at isolated points (namely, the maxima of  Q'). Thus they are too local to 
account for second derivatives. The approach I employ incorporates the structure 
of  the viscosity solutions on neighborhoods of  points. 

I have organized the material in this paper into three sections. In the first 
section we construct two approximation operators A + [u] ~ u + ~> u --> u7 
A/-[u]. The operators are constructed from the distance function in the ambient 
space of graph(u). The range of  A + is the space of  semiconcave functions and the 
range of  A~- is the space of  semiconvex functions. These operators are nonlinear 
and do not map into C~(a'2). The important point, however, is that A + takes 
viscosity subsolutions of  (0.1) into viscosity subsolutions and Ag- takes viscosity 
supersolutions of (0.1) into viscosity supersolutions. This property is in fact the 
main result of  Section 2. In order to prove this we use one of  the equivalent 
formulations of  viscosity solution found in M. G. CRANDALL, L. C. EVANS, & 
P.-L. LIONS [2], L. C. EVANS [4] and [5], and P.-L. LIONS [8]. In Section 3 we com- 
bine results on differentiation of  semiconvex and semiconcave functions and modi- 
fications of  ideas from J. M. BoNY [1] and C. PuccI  [10]. The result is obtained by 
purely analytic techniques. 

Finally, let me also mention that I have endeavored to keep this paper self- 
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contained. As a result I have given proofs to some results which may already be 
known. The proofs, however, may be new. 

In closing I wish to thank E. N. BAre, ON and L. C. EVANS for their suggestions 
and advice. Their help has been greatly appreciated and has certainly helped 
make this paper readable. 

1. Construction of Approximations 

The purpose of  this section is to construct special, nonstandard, regularized 
approximations to a continuous function, u, defined on a bounded, open domain 
/2 in R"; and to develop some of the unique properties that these approximations 
possess. This construction and development cause us to frequently alternate in 
viewing the ambient sp~tce as either R ~ or R ~+~. Some of  our notation and defini- 
tions are used in either space, the meaning of  these cases is clear from the context, 
e.g., B(z, r) could denote the ball in R ~ or R ~ ~-1, and the proper choice is made by 
knowing the space in which z lies. The letters x and ~ are used exclusively for points 
in R n and we often denote points in R ~+1 as ordered pairs (x, y) with x in R" and 
y in R. The derivatives of  a smooth function ~b(z) are denoted by D~(z), D2ff(z) . . . .  ; 
although we also frequently view Dcb(z) as the vector valued function 

~8--~-~ . . . .  ~ ] .  I f2  is a unit vector then Daub(z) = Dcb(z) (2); if z ---- (x,y) 

then Dxcb(x, y) = Dc~(x, y) o i and Dy~b(x, y) ---- Dcb(x,y) oj where i : R" --~ R "+1 
is the injection i(E) = (~, 0) and j :  R---~ R ~+1 is the injection j(~) ----- (0,~). 

We shall now begin the construction of approximations to a function u E C(/2). 

Detinit ionl.1.  Given uE C(~)  define QE C(R n+1) by 

Q(x, y) = distance ((x, y), graph (u)) ; 

define the sets /2, and d~ by 

/2, ----- (x E R" I distance (x, (R" \ / 2 ) )  > e); 
and 

= ( (x ,y)  E R "+l l x E / 2 ,  and Q(x,y) ~ e). 

The function Q has the following important properties. 

Lemma 1.2. Q is Lipschitz continuous and satisfies the following inequalities: 

IDOl __< 1 a.e.; 

1 
D2Q(x, y) ~ - -  in R "+~ \ graph (u) 

Q(x, y) 

for any direction ;t (in the sense of  distributions). 

(1.3) 

Proof. That  Q is Lipschitz continuous follows easily after characterizing Q as 

O(x, y) = inf dz(x, y) (1.4) 
zEgraph(u) 
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where dz(r = ] r - z l. In fact, Q is the limit of  smooth approximations Qp ~ Q 
given by 

] [ff{d(,,~f#))(x,y)}-'d~ - 7 ,  for (x, y) q graph (u). (1.5) Q,(x, y) = 

We next calculate 

OQ, fx, y) = (Qt,(x, y))t,+l f I(x - ~, Y - u(~))I - r -2  (x - ~, y - u(~)) d~. 
12 

An elementary estimate yields 

IDQ,(x,y)l <_ (Q~,(x,y)) p+I f [(x - ~ ,y  - u(~))I-P-1 d~ 
D 

y ) ) - - I  

Q;+I . Q~-p. Q-1.  

Therefore [DQp(x, y) [ < Ql'(x' y) Since Qp(x, y) --~ Q(x, y) uniformly on corn- 
= Q(x, y)" 

pact subsets of  R "+I, we conclude IDQp(x, Y)l =< 1 + o(1) in R "+1 \ graph (u). 
(Thus, the first inequality in 1.3) is established by letting p ~ cx~. 

In order to complete the proof  of  Lemma 1.2, we calculate D2Qp(x, y) for an 
arbitrary direction 2. We find 

D2Qj,(x, y) ---- (p -a t- 1) (Qp(x, y))2p+l 

• [ f f  I ( x -  , , y  - u(,))I - ' - 2  (4.  (x - , , y -  u(,)))--d,] 2 

- -  ( p  -~- 2 ) ( O p ( X ,  y)pq-1 [ j  ](X -- ~,y -- u(~))]-,-4 (2" (x -- ~ ,y  -- u(~))) 2 d~] 

+ (Qp(x,y)) ~'+' f l( x - ~ ,y  - u(~)) I d~. - ' - 2  
12 

An application of  H61der's inequality to the first term on the right together with 
(1.4) and (1.5) yields 

D~Q,(x, y) =< (p "-I- I)(Ql,(x, y))2p+, 1/[(x - ~,y - u(~))1 -l' d~] 

- (p + 2) (Q,(x, y)) '" '  I f  I(x - ~, y - u ( ,~ ) ) I - ' - '  (4 .  (x - ,~, y - u(~))) 2 d~] 

-I- (Q,(x, y ) ) '+ '  f I(x - ~, y - u(~))I . ' . 2  d~ 
12 

<= (Qp(x, y))'+' f I (x  - ~, Y -- u(~))I - ' - 2  d~ 
12 

<= (Qp(x, y))t,+, (Q(x, y))-z  f l( x _ ~, y _ u(~))1-" a t ,  (1.6) 
12 
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and consequently 

We conclude that 
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D~Qr(x ' y) < (Qp(x, y)'~ 1 
= \ Q(x, y) / Q(x, y)" 

1 
2 m DaQp(x, y) ~ -q- o(1) 

Q(x, y) 
in R "+1 \ graph (u). 

This last result clearly implies the second inequality in (1.3). 
QED 

and so 

IlDullLo  > Ix -- 
= y  )3" 

The  definition of Q then shows that 

Q(x,y - h) <= (Ix - ~l 2 + (y - ~ - h)27. 

Rademacher's Theorem implies that Q is differentiable almost everywhere; thus 
we may assume without loss of generality that Q is differentiable at x, y and so from 

Definition 1.7. Define subsets, 0 + and 0- ,  of  0 by 

0 + = {(x, y)E 0 l y ~  u(x)); 

0 - =  ((x,y)E 0 [ y <  u(x)}. 

The next lemma is used to prove that in the appropriate regions the level sets 
o f  Q are graphs of  Lipschitz functions. 

/.,emma 1.8. I f  DuE L~(g2; R") then 

Dya >: (1 + [[Du[[2~) -�89 a.e. in 0+; 

DyQ ~ - ( 1  + ][Dull~o) -�89 a.e. in 0 - .  

Proof. Consider DyQ(x, y) for (x, y) E 0 +. Since (x, y) E 0 + C O 

B((x, y); e) C -(2 • R, where e = Q(x, y). (1.9) 

Let  (J,)3) E graph (u) be a point such that [(x - ~, y - )3) I = e. It follows from 
(1.9) and the Lipschitz bound on u that 

Y -- Y > ([IDu[lLoo) -a (1.10) 
Ix Y I =  

Indeed, by implicit differentiation of  @ - y)2 + ]j _ x 12 ---- e 2 

~ - x  

Z~)3 = ~ _ Y 
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the last inequality obtain 

DyQ(x,y) >= (y - ~) (Ix - ~12 + (y - 33)2) -�89 

(Ix-~, ~ )-' .  

Using (1.10) we conclude that 

DyQ(x, y) ~ (1 + llDull~oo) -~. 
It is clear that the second half of this lemma can be proved by an argument 

symmetric to the one just employed. 
QED 

The next theorem completes the construction of the approximations. 

Theo reml . l l .  I f  D u E L ~ ( g 2 ; R  ") then there is an C o > 0  such that for 

e E (0, Co) there exist functions u~ ~, u~- E C(g2e)) with the following properties: 

u~- < u < u, + in Y2e, 

a(x ,  u{(x))  --- e for xE g2,, 

[IOu~ IIL~ =< I[Dullzoo, (1.12) 

D2u~ + ~ _ __e~ (in the sense of distributions); 

D~uF <= __c~ (in the sense of distributions), 

where the constant Co, appearing above, depends only on I[DuIIL~. 

Proof.  Let ~p be a smooth function o n  R n-]-I such that 

~0 ~ 0, supp (~0) ( B(0, 1) and f ~p(z) dz --- 1. 
Rnq-1 

~p~ by ~p,(z)= ~-n-a ~0 (-~-~) and define Q0 by Define 

Q~(z) = ~p~ * Q(z) = f r6(z - ()  Q(()  d( .  
Rnq-1 

If  6 + = ((x, y) E d ~+ I distance ((x, y), R n+l \ d~ +) > ~}, then by using Lemma 1.8 
we conclude 

DyQ~ ~ (1 q- IlDull~oo) -~ in ~ - .  

On the other hand, Lemma 1.2 yields 

[DQ~ ] ~ 1 in d~- ; 

I 
92Q~(x, y) < in d) + 

= Q(x, y) - ~ 

(1.13) 

(1.14) 
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We now apply the classical Implicit  Funct ion Theorem to Qo and so obtain a 
funct ion u,,+E C~(:2,+~) such that  

a~(x, u+~(x)) = e for x E  -Q~+~. 

Calculating Du,+o, we find 

Du+ (x ) DxQo(x, u,+o(x)) 
= - D ~ Q ~ ( x ,  + ' u,,.(x)) 

and using (1.13) and the first inequality in (1.14), we obtain 

1[ Du5  [IL= ~ II Du ILL=" (1.15) 

2 ~- Calculating D~u,i~ with ). = (2, 0) gives us 

2 + Ozu,,,~ : --(OyQ,~)-' [D2Q, q- 2(DyDs (Oyu~-~) + (O2Qo) (Oyu~) 2] 

~-- -(DeQo) -1 [D2Q~((2, Oy, + u,,~), (a, O,u+~))] 

Co >= 

By letting (~ "~ 0 we obtain all the desired results for  u + where u + = lim u,,o. + 
6"~O 

The corresponding results for  u;- can be obtained by an argument  symmetric 
to the one just  employed.  

QED 

We have now constructed the approximat ions  to the Lipschitz cont inuous 
funct ion u. We shall eventually show that  if u is the solution (in the sense made 
precise in the next  section) to an elliptic partial  differential equat ion then u + 
is a subsolution and u j  is a supersolution to the same equation. In order  to do 
that  we need some addit ional  propert ies o f  these constructions. 

Definition 1.16. Given an open subset G o f  R" and 9 E  C~(G) we define v: 
G --~ R ~+1 by 

v(x) = (1 + IOq(x)12) -& (Oq~(x),-1).  

Definition 1.17. Given G and q~ as before, we define ~/~ by 

~ : sup ( ~ / ~  0 ] B((x, ~0(x)) + ~ ( x ) ;  ~) f~ graph (q0 = 0 for  all x E G). 

Definition 1.18. Given G and ~v as before, define fr by 

f# ---- ((x, y) I (x, y) = (2, ~v(~)) + rp:(~)) for  some (~, 2) E [0, ~1~) • G}. 

Lemma 1.19. Let G be an open subset o f  R n and let cf E C~(G). Assume % > 0 
and define ~(x,  y) as ~(x ,  y) = distance ((x, y), graph (O0)). Then 

q~[~r E C~176 (1.20) 
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Proof. By the definition of ~/~ it is clear that 

~b((x, ~(x)) q- ~p,(x)) = ~ if (~, x) ~ [0, %) • fOG. 

Fix an x o ~ G  and consider the map H:[O,~to)• "+~ 

(1.21) 

given by 
H0/, x) = (x, ~(x)) + ~v(x). It  is easily seen that H is smoothly invertible on 
[0, ~o) • B(xo; ~o) if ~/o is sufficiently small. Thus qi is smooth on Jff /~ f~ for 
some neighborhood ~"  of  graph (q~). 

We now proceed to prove that ~ is smooth on ff \ JV'. Let (~/o, Xo) be a point 
in [0, ~ )  • f# and consider 

where T:  R n + ' -+ R ~ ~-I 

y)  = y ) ) ,  

Let p :  R "+l ~ R" and 

is a rotation such that 

T((0, - 1)) ---- V(Xo). (1.22) 

q : R "+l -+ R be the projections such that p o i = idR, 
and q o j = idR (where i a n d j  are the injections fix) = (x, 0) and j (y)  = (0, y)). 
In order to prove that �9 is smooth near (Xo, q~(Xo)) + ~/o~'(Xo) it is sufficient to 
prove that �9 is smooth near T-l((Xo,~(Xo)) + ~o~(Xo)). To do this we consider 
the map 

S ( x )  = p o r-l(x, 0.23) 

We claim that S is smoothly invertible near Xo. Indeed, 

DS(xo) (h) = p o T-l(h, DqD(Xo) (h)); 

since (h, Dq~(Xo) (h)) is orthogonal to V(Xo) and Tis a rotation, it follows from (1.22) 
that 

r - ' (h ,  O~(Xo) (h)) = (DS(xo) (h), 0). 

The last equation implies that DS(xo) is nonsingular, which proves our claim. 
Define ~(:~) for ~ near -~o = S(xo) by 

(o(~) = q o T-~(S-~(.Tc), ~0(S-a(~))). (1.24) 

We claim that 

T (graph (~)) Q graph (~). (1.25) 

Indeed, since a point of  graph (~) can be written as (~, ~(~)), for x = S-1(~) 
we see that 

T(~r ~(Yc)) = T(S(x), q o T-~(x, ~o(x))) 

= T(po T- ' (x ,  q~(x)), q o T-X(x, ~p(x))) 

= ( x ,  

This establishes our second claim. 
It is clear that ~/~ ~ r/~ since T is a rotation. Let ~(~) be defined by (1.16) for ~. 

Since ~(~) is normal to graph (~) it follows from (1.25) that T(~(~)) is normal to 
graph (~) and in fact 

T(~(~)) = v(S-%~)). (1.26) 
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It is also clear that 
a3((~, ~(~)) + ~(~) )  = ~. 

Consider the map ~ defined by 

~g(~, r/) ---- (~, ~(~)) -4- @(~). (1.27) 

In order to prove that ~ is smooth near T -1 ((Xo, 9)(xo)) + ~/o~(xo)) it suffices 
to show that ~ is smoothly invertible near (Xo, ~o). 

By use of (1.22)-(1.24) we find 

D~(~o) o DS(xo) (h) = 0 for all h E R", 
and therefore 

D~(Xo) = 0. 

Using this fact, we obtain the following equation 

Dk~(~o, ~/o) (h, k) ---- (h, 0) § (0, k) § ~?oD~(~o) (h). 

To prove that Dk~(Xo, ~o) is nonsingular (and implicitly that k~ is smoothly in- 
vertible near (Xo, ~/o)) it is sufficient to show 

h § p o D~(:~o) (h) =l= 0 if h ~ 0. (1.28) 

We take the inner product of the left side of (1.28) with h and so conclude that 
a sufficient condition for (1.28) to hold is 

I(h) ---- [h 12 § ~o((h, 0)-D~(~o) (h)) > 0 if h =t = 0. 

Since D~(xo) = 0 we find that 

I(h) ---- I h 12 - ~/o(D2~(~o) (h, h)), 

and because ~/o < ~7~ we conclude that 

I(h) > [hi 2 - ~  Ih?, 

By our chain of reasoning this implies ~ that is smooth near (Xo, 9)(Xo)) § 
~/o~(Xo) and so completes the proof of this lemma. 

QED 

Lemma 1.29. Let G be an open subset o f  R n and let q) E C~~ Assume ~ > 0 
and let q) be the distance function as defined in Lemma 1.19. Then for every ~ E [0, 9)~) 
there is an open set G~ and % E C~176 such that 

~ ( x .  9)~(x)) = ~.  

9),(x + ~p o ~(x)) = 9)(x) + q o ~(x) for all x E G. 
(1.30) 

D%(x  § ~IP ~ v(x)) = Dg)(x) for all xE G; 

D~%~(x § ~p o ~,(x)) <= DZag)(x) for all x E G and all directions 2. 
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Proof. As noted in the proof  of  Lemma 1.19 

~((x, q~(x)) + r/~(x)) = r/ for all (r/, x) E [0, */,) x G. 

We differentiate this equation and obtain 

D~((x ,  q,(x)) + m'(x) (~(x))) = 1. 

Since [D~(~, ~-)1 ~ 1 in fr we conclude 

Dxg,((x,  qo(x)) + ,~,,(x)) = p(, ,(x)) ,  
(1.31) 

oy~((x, ~0(x)) + ~(x)) = q(~(x)); 

where p and q are the projections that are used in the proof  of  Lemma 1.19. 
Since qO'(x)) ~ 0 for all x E G, we may apply the Implicit Function Theorem 
and conclude the existence of  a function %(x) defined on 

G,~ = ( x l x  = $ + p(r/~(~)) for some ~ E G), (1.32) 
such that 

qi(x, q0~(x)) = ,/. (1.33) 
We conclude 

q%(~ + p0/~(~))) = q0(~) + q(~,(~)) for all ~ E G. 

Differentiating (1.33) with respect to x, we obtain 

Dxq'(x, ~ ( x ) )  + D,,~(~r ~ ( x ) )  O ~ ( x )  = O. 

Solving for Dq%, we there obtain 

D~,(x) = - (O,,~(x, ~0~(x)))-' Dx~(x, ~ ( x ) ) .  

From this equation and (1.31) we calculate t h a t  

P(~(r for all ~ E G. D%(~ + p(~p,(~))) = q0'(~)) 

Using the definition of  ~(~), we obtain 

D~%(~ + p(~,(~))) = D~(D for all 8 E G. 

We now proceed to prove the last inequality of  (1.30). Let z = (x, y) for the 
following calculations. By (1.31) we see that IDa(z)[2 = 1 on &. Differentiate 
this equation twice in a direction :t to obtain the inequality 

DCbD(D]q~) < 0 in ~ .  

Using (1.31), we find that 

�9 (~)" D(D~Z~O((~, 99(~)) + ~(~))) =< 0 for all ~ ~ [0, ~7~). 

The inequality above may be rewritten as 

~ (D~2~((8, T(i)) + ~(8))) ~ ~ E [o, ~ ) .  0 for all 
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This differential inequality implies that for (~, ~)E [0, ~ ) x  G 

Da2~(~ e, ~p(~)) => D~( (~  e, ~0(,e)) + ~p,(~)). (1.34) 

Let f~ = (2, 0) and differentiate (1.33) twice in the direction ;t to obtain 

D~q~ + 2(D$Dyqb) (Dxcp~) + (D2yqb) (OaqJ~) -}- Dyq~ D2a~. = O. 

Solving for D~% yields 

D~.(~)  = - ( D ~ ( x ,  ~.(x))) -~ D2~(x, ~,(x)) <(~, D~.(x)) ,  (2, D~.(~))>. 

Replacing x by ~ + p(~(~))  leads to 

1 l (  " P(~(~))'[" D~((~e' q~(~e)) + r/~(~))' + - -  q ( , , ( @  - z  

I( z where ,~= , - 2  . ~ ]  2, - 2 - ~ ] .  From the equation above and 

(1.34) we conclude 

D2~n(~) ~ D2q0~(~ e + P0P'(~))) for all ~ ~ G and r/~ [0, ~ ) .  

This completes the proof  of the lemma. 
QED 

2. Viscosity Solutions for Fully Nonlinear Equations 

We begin by recalling the definition of a fully nonlinear elliptic partial differen- 
tial operator. Next we recall the definition of viscosity solution of a fully nonlinear 
elliptic partial differential equation. The main objective of this section is to show 
that under reasonable assumptions the approximations, u + - e and u2- q- e, 
of  a viscosity solution u of a fully nonlinear elliptic partial differential equation 
are viscosity subsolutions and supersolutions, respectively. This fact will be ex- 
ploited in the next section when we prove a maximum principle for viscosity solu- 
tions of  fully nonlinear elliptic partial differential equations. 

The set of  n x n  real valued symmetric matrices will be denoted by S:(n). 
These matrices admit the partial ordering ~ w h e r e  M ~  N if M :~ N and M - N 
is positive semidefinite. A fully nonlinear partial differential operator ~-[.] is 
defined by 

,~'[q~] (x) = F(D2~(x), D~(x), ~(x)) for all tp E C~(Q), (2.1) 

where FE C(6:[(n)•215 

Definition 2.2. The operator ~ [ . ]  is degenerate elliptic if 

F(M, p, t) ~ F(N, p, t) for all M ~- N and (p, t) E R n x R. (2.3) 

The operator ~'[.] is uniformly elliptic if there are constants Co and cl such that 

F(M, p, t) - F(N, q, t) ~ Co trace (M -- N) - cl IP - q l (2.4) 

for all M )  N, and (p, q, t)E R n x R n x R .  
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Definition 2.5. The operator at[.] is nonincreasing if 

F ( M , p , t )  ~ F (M,p , s )  for all t > s, and (M,p)E SPI(n)xR n. (2.6) 

The operator ~ar[.] is decreasing if there is a constant ko > 0 such that 

F(M,p,  t) - F (M,p , s )  ~ k o ( s  - t) for all t > s ,  and (M,p)ESel(n)xRn.  (2.7) 

We shall now restate the definition of  viscosity solution for the nonlinear partial 
differential equation 

~r[w] = 0 in 2 ,  (2.8) 

as formulated in P.-L. LtoNs [8]. In order to proceed we need first to define the 
superdifferential and subdifferential of  a function w E C(f2). 

Definition 2.9. Let w E C(.Q). The superdifferential, D+w(x), is defined as the 
set 

D~-w(x) = ((p, M)  E R n • 5a(n) I w(x -}- z) ~ w(x) -k p" z -Jr- �89 M(z, z) q- o(1 z 12)). 

(2.10) 
The subdifferential, D-w(x), is defined as the set 

D-w(x) = ((p, M) E R " + ~ ( n )  I w(x • z) > w(x) + p .  z + �89 M(z, z) - o(Iz [5)}. 

(2.11) 

Definition 2.12. w E C(.Q) is a viscosity supersolution of  (2.8) if 

F(M,p ,  w(x)) ~ 0 for all (p, M)E D-w(x), and for all x E  .Q. (2.13) 

w E C(I2) is a viscosity subsolution of  (2.8) if 

F(M,p ,  w(x)) ~= 0 for all (p, M)E  D+w(x), and for all x E  2 .  (2.14) 

w E C(O) is a viscosity solution of  (2.8) if it is both a viscosity supersolution and 
a viscosity subsolution. 

The next lemma is a useful necessary and sufficient condition for w to be a vis- 
cosity supersolution of  (2.8). The set G which appears in the lemma is an arbitrary 
open subset of  f2. 

The following lemmas have been established in one form or another in P.-L. 
LIONS' collective work, in particular [8]. 

Lenuna 2.15. Let w E C(f2). The following are equivalent: 

(i) w is a viscosity supersolution of(2.8) .  

(ii) F(DZ?(Xo), Dq~(Xo), ~0(Xo)) ~ 0 for all (Xo, ?)  E f2 • C~176 
xo E G, w(x) >-->_ ?(x) for all x E G; W(Xo) = q~(xo). 

such that 
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Lemma 2.20. Let w E C(f2). The following are equivalent: 

(i) w is a viscosity subsolution of (2.8). 

(ii) F(D2q~(Xo), D~v(Xo), ~V(Xo)) ~ 0 for  all (Xo, ~o) E f2 • C~(G) 
Xo E G, w(x) <: q~(x) for  all x E G; W(Xo) = q~(Xo). 

such tha t  

Recall  the definitions of  f2,, u + ,  ug and eo f rom Section 1. We are now ready 
to relate the approx imat ions  u + and u 7 with viscosity subsolutions and supersolu- 
tions, respectively. 

Theorem 2.21. Assume u E C ( ~ ) A  W1,~(I2) is a viscosity subsolution of  (2.8). 
I f  ~ ' [ . ]  is degenerate elliptic and nonincreasing then u + - e is also a viscosity 
subsolution of  (2.8) for all e E [0, Co). 

Proof .  We shall p rove  this theorem by showing tha t  (ii) o f  L e m m a  2.20 holds for  
u~ ~ - e  on O~. Let  (Xo, 9) E O •  such tha t  xoEG,  u+(x ) - e<:q~(x )  
for  all x E G and u+(Xo) E - e = tp(Xo). Assume for  now tha t  in fact, u+(x) - 
e < q~(x) - 6 Ix - Xol 2 for  some 6 > 0. Define q~(x) = 9(x) + e - 6 Ix - Xo] 2 
and note  tb_at u+(x) <~ ~(x) for  all x E G and u~(xo) = ~(Xo). Let  ~(x) be the 
no rma l  to graph (~) at  (x, ~(x)) as defined by Definition 1.16. We claim 

(Xo, ~(Xo)) + e;(Xo) E graph  (u). (2.22) 

Indeed,  take  (x', u(x')) to be a closest poin t  to (Xo, ~(Xo)) = (Xo, u+(x)). Thus  
](x' - Xo, u(x') - q~(Xo))] = e and since u+(x) <~ ~(x) for  all x E  G we see 
tha t  

](x' - x, u(x') - ~(x)) ] :> e for  all x E G. (2.23) 

Consider  the constra ined minimizat ion  p rob lem 

minimize h(x, y ) =  ](x - x', y - u(x'))12; 

~(x) - y ---- 0. 

Since (Xo, ~(Xo)) is a solution, the theory of  Lagrange  multipliers shows tha t  there 
is a 2 o < 0  such tha t  

(Xo  - x ' ,  ~ ( X o )  - u ( x ' ) )  = Z o ( D ~ ( X o ) ,  - 1 ) .  

Thus  for  some 2 o > 0  we have 
A 

(x"  - Xo ,  u ( x ' )  - ~(Xo))  = ~ o ; ( X o ) ;  

and by taking the no rms  of  bo th  sides o f  this equat ion we conclude e = ,~o- 
This  proves  our  claim. 

Let  ~,(x) be the no rma l  to g raph  (q~ -t- e) at  (x, ~(x) + e) as defined by Defi- 
ni t ion 1.16. No te  tha t  ~'(Xo) ---- ~(Xo) and ~(Xo) = ~V(Xo) q- e. Thus  by (2.22) 
we see tha t  

(Xo, ~(Xo) + e) -1- ev(xo) E graph  (u). (2.24) 
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We claim (for a possibly smaller G) that ~ + ,  > e. Indeed, by (2.23) we see that 

B((xo, ~(Xo)) + e;(xo); e) A graph (~) = 0. 

It  follows by the definition of ~ that for some ~/' > e 

�9 . t B((xo, q;(Xo) + e) + ~ V(Xo), ~ ) f~ graph (~ + e) = 0. 

By the continuity of Dq~ and D2~ we conclude that if G is a sufficiently small 
neighborhood of  Xo then ~/~+v, > e. 

Apply Lemma 1.29 to G and (~ + e)E C~(G). The conclusion is that there 
is an open set G, and a function T, E C~176 such that 

qo~(x + ep o ~(x)) ---- cp(x) + e + q o ~(x) for all x E G, 

Dq;~(x + ep o ~,(x)) -= Dot(x) for all x E G; (2.25) 

DZ:f,(x + ep o ~,(x)) <= DZqo(x) for all x E G and all directions 2. 

Since u+(x) <= q;(x) + e for  all x in G and since distance (graph (~0 + e), graph (~0,)) 
= e we conclude that 

u(x) <= ~,(x) for all x E G,. 

By (2.24) we see that 

U(Xo + ep o ~(Xo)) = ~v,(Xo + ep o ~(Xo)) �9 

Set x" = Xo + ep o ~,(Xo) and note that since u is a viscosity subsolution of  (2.8) 
we have by Lemma 2.20 

2 I t ~ - -_  F(D ~,(x ), Dcp,(x ), %(x')) > 0. (2.26) 

By (2.25) we see that 

~,(x') _> ~(Xo), 

D%(x') = Dq~(Xo) ; 

D2qD(Xo) > DZ~,(x'). 

Since : [ . ]  is degenerate elliptic and nonincreasing we conclude 

F(O2ef(Xo), D~(xo), q~(Xo)) ~ F(D2~,(x'), D~(x') ,  ~,(x')). 

Combining this inequality with (2.26) we obtain 

r(o2qo(Xo), Dqo(Xo), ~0(Xo)) > 0. 

We now only have to remove the restriction u+(x) <= q~(x) + e - O Ix - xo ]2 
for  some O > 0. This, however, is relatively easy. Indeed for any ~0 E C~176 
such that u+(x) <_ ~(x) + e and u+(xo) = 99(xo) + e we can apply our previous 
results to ~ ' ( x ) = ~ ( x ) + O ] X - X o ]  2 for any 8 > 0 .  Thus 

F(D2cp(Xo) + 2OI, Dcp(Xo), ~0(Xo)) ~ 0 for any 6 > 0. 

By the continuity of  F we conclude 

V(D2~(Xo), D~(xo), ~(Xo)) > O. 
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Lemma 2.20 now shows that u~ - e is a viscosity subsolution of (2.8). This con- 
cludes the proof  of  the theorem. 

QED 

The following dual theorem to Theorem 2.21 can of course be proved in an 
analogous manner. 

Theorem 2.27. Assume u E C(~) A W1,~([2) is a viscosity supersolution of  (2.8). 
I f  .~-[.] is degenerate elliptic and noncinreasing then uZ + e is also a viscosity 
supersolution of  (2.8) for all e E [0, eo). 

3. The Maximum Principle for Viscosity Solutions 

The purpose of  this section and the fundamental result of this paper is a proof  
of the following maximum principle for viscosity solutions of  (2.8). 

Theorem 3.1. Let u, v E C(~) #~ Wl'~176 Assume u is a viscosity supersolution 
of (2.8) and v is a viscosity subsoluiotn of  (2.8). I f  either 

(or ~ [ . ]  is degenerate elliptic and decreasing, 
o r  

(fl) ~-['] is uniformly elliptic and nonincreasing, 
then 

sup (v - u) + ~ sup (v - u) § (3.2) 
~O t2 

The proof  of Theorem 3.1 will be deferred until sufficient machinery has been 
developed to work with the approximations u;- + e and v + § e. We begin our 
development with a fundamental lemma on semiconcave functions. 

Lemma 3.3. Let w E C(~) #~ W 1'~~ and assume 

D]w ~ - K o  in [2 (in the sense of  distributions) for all directions 2. (3.4) 

Then there is a function M E L I ( f 2 ;  (ff'(n)) and a matrix-valued measure 1"E 
.///(.Q; 6a(n)) such that 

(i) D2w : M + I" (in the sense of  distributions). 

(ii) /" is singular with respect to Lebesgue measure. 

(iii) /~(S) is positive semidefinite for all Borel subsets, S, of  [2. 

(iv) M(x) (2, 2) ~ - K o  t2[ 2 for all 2E Rn; for almost all xE [2. 

Proof. By considering w(x) + Ko tx 12 we can assume without loss of generality 
that Ko----0 and so 

D2w ~ 0 in /2 (in the sense of distributions). (3.5) 
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Let {el, . . . ,  e~} be the standard basis for R ~ and denote the Borel a-algebra of  
subsets O by ~ .  By (3.5) 

D~iw >: 0 in O (in the sense of  distributions) for i = 1, 2, . . . ,  n. 

It  is well known that a nonnegative distribution is a measure and so we conclude 
that for i ---- 1, . . . ,  n there are measures 7ii on ~ such that for any ~p E C~~ 

f w(x) D2e~Cp(x) dx = f q~(x) dTii(x). (3.6) 
0 f l  

Applying (3.5) with 2 .+. = 1 e 1 ,j ~ ( ,  -k ej) and 2i)- = ~ -  (e; - ej) allows us to con- 

clude, for 1 <: i, j :< n, 

2 D~jw :> Deiw -4- 2DeiDejW -l- 0 in O (in the sense of  distributions). 

Using this and (3.6), we find that for 1 ~ i, j :< n, ~ ~ 0 and ~p E C~(O) 

IJW(X) DeiDej~(x)dxl'�89 " 
Let TO(W) = f w(x) DeiDej~(x) dx and note that the preceding inequality implies 

that T o has a continuous extension to Co(O). Measure theory then implies the 
existence of  a signed measure 7ij on ~ such that for any ~ E C~~ 

f w(x) De,Dej~V(x) dx : f ~(x) @ij(x). (3.7) 
t2 t2 

Each Fii for 1 ~ i, j ~ n cart be decomposed as 

 ,ij = ?,,j + 9,j,  

where ~j  is absolutely continuous with respect to Lebesgue measure and ~;j is 
singular with respect to Lebesgue measure. We can also assume without loss of  
generality that 7o = 7ji and 7ij : ~3ji for all 1 :< i , j  =__ n. 

The Radon-Nikodym Theorem then shows that there is an L 1 function m~j 
for each 1 ~ i , j  ~ n such that 

f mij(x) dx = 7ij(S) for all S E ~ .  
s 

Again we can assume without loss of  generality that m~j = mj~ for all 1 ~ i, 
j :< n. Property (i) is now established by taking M----(rnu) and /1 : (Tij). 
Property (ii) is also established by this construction. 

In order to prove property (iii) let E be any closed subset contained by the 
support of F. Thus meas (E) ---- 0. Let ~ be a sequence of monotone decreasing 
functions in C~~ such that 

~0k(x) : 1 if x E E,  

qgk(x ) "~ 0 if x E E.  
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Given a direction 2 = ( 2 1  . . . . .  2n) we  have by (3.5) for each k 

f w(x) ~ a,Zj D<iDejmk(x) dx > O. 
19 i,j= 1 

From our representation we conclude 

f ~ mis(x) 2,2jqJ,(x) ,Ix + ~ f ~k(X) 2e2j d~,o(x) >= O. 
i , j=l  i , j=l  0 

Letting k ~ co, we conclude that 

f 2i2ydr >-- O 
i , j ~ l  E 

and consequently 
I '(E) (2, 2) ~ O. 

From this, property (iii) easily follows. 
An argument similar to the one above establishes 

( / M ( x ) d x ) ( ~ , , ) > : O  for any closed subset, E, 

of Q which is disjoint from the support of / ' .  

Since the support of _P has Lebesgue measure zero the last inequality implies that 
property (iv) holds. 

QED 

The next lemma examines the size of  the set of points with small derivatives 
for a function satisfying (3.4) and having an interior maximum. It is based on the 
ideas in C. PuccI [10]. 

Definition 3.8. Let w E C(s W1,~(s and define ff~ by 

f r  {x E s ] for some p E B(0; ~), w(z) <: w(x) + p .  (z - x) for all z E s 

(3.9) 

Lemma 3.10. Assume w E C ( ~ / 5  Wl,~176 and that (3.4) holds. I f  w has an 
interior maximum then there are constants Co ~ 0 and ~o ~ 0 such that 

meas (ff~) ~ Co 6" for all 0 < 0o. 

Proof. Let ~o be a smooth function on R" such that 

~p ~ 0 and supp (~o) Q B(O; 1); 

f v,(x) dx= 1. 
Rn 

For z 7 > 0 

(3.ll) 

set set w ,x, of for 
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Define ff~ analogously to (~. We claim that for any sequence ~ ~ 0 

meas ( [ l imsup  (#~,] \ , k  ,-~oo ~ ) - - 0 .  (3.12) 

Indeed, for almost all x E lim sup (~t we have 
i--+ oo 

w.~(x) -~ w(x) ; 
(3.13) 

Dw.~(x)-~ Dw(x). 

We can assume without toss of generality that x E (agi for all i. By the definition 
of @]l we know 

wni(z ) ~ wni(x ) + Dwni(x ) (z - x) for all z E s Dwn~(x) E B(0; 1). 

We may also assume without loss of generality that wni(x) -+ w(x) and Dwnj(x) 
-+ Dw(x). We therefore conclude that 

w(z) ~ w(x) + Dw(x) (z - x) for all z E ~ ;  Dw(x) E B(0; 1). 

Thus x E (a~ and our claim is verified. 
In order to complete a proof of  this lemma it will now suffice to prove (3.11) 

for the sets (~ with Co independent of~. Since w has an interior maximum it follows 
that w~ has an interior maximum for ~ sufficiently small. In fact, ~ there must be 
an ~7o > 0 such that 

_sup .  Yn _sup w~ 0~ "1 

Since ~ is bounded it now follows that for some So = So (~, ~) 
Dwn(@]) = B(0; t~) if t~ < t~o and ~ < ~o. (3.14) 

Consider the integral 

I =  f [det (D2w,~(x))ldz; 

note that by the change of variables y = Dw,~(z) and (3.14) 

x>= f dy----- meas (B(0;O)). (3.15) 
~ ( o ; ~ )  

On the other hand, by (3.4) and since w~ is concave down at every point z E (~ 
we obtain 

I det (D2w~(z))l <~ K8 for all z E (~.  

Combining this inequality with (3.15) we conclude 

meas (B(0; 8)) ~ Kg meas ((a~) for all ~ < tSo and ~ < ~7o. 
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It is clear that there is a constant Co > 0 such that 

meas (fq~) ~ Co O" for all ~ < ~o and B < ~/o. 

This completes and concludes the proof  of  the lemma. 
QED 

The next lemma deals with superdifferentials and subdifferentials. 

Lemma 3.15. Let w E C(~) A WI,~(~) andassume (3.4)holds. I f  D2w = M + F 
is the decomposition given in Lemma 3.3 then for almost all x E ~2 

w(x q- z) - w(x) - Dw(x) (z) - �89 M(x) (z, z) = o(Iz 12). (316) 

Proof. Our proof  makes use of the following differentiation theorem 

lim (e - l {  f I x - y l  -~+1 M(x) - MO')l dy 
e "~ O B( ) 

+ f [ x - y l - " + l d l F ( y ) l l : O  for a.e. x E / 2 ,  
B(x;O / !  

where Irl-- Z ly.I and [M(x)- M(y)] = 2 [m.(x)-mo(y)]. 
i , j :  1 i , j= 1 

(3.17) 

Let Xo be a point at which Dw(x) exists and (3.17) holds. We claim that (3.16) 
holds at Xo. 

Without loss ofgenerali tywe can assume W(Xo) = O, Dw(xo) -= O, M(xo) = O, 
and Xo = 0. Let w n be as defined in the proof  of  Lemma 3.10. For  any E E N  
let 

I:(E) = e -~-z f zdx) w.(x) dx, 
B(0;2e) 

where Z~r is the characteristic function of E. We change coordinates and integrate 
by parts to obtain 

2e 

Xy(E) = e -"-2 f f ze(rx) r"-~w.(rx) dr dSx 
s n - - 1  0 

= ~-.-2 f f :-Ize(rx) D2w~(~x) (x, x) d~ 
s n - - 1  0 

- -  Dw,I(O ) (X))do-- w,~(O))drdSx 
= e-n-2  f : "o o r"- '  zE(rx) dr DZw~(ax) (x, x) da dSx 

S n -  1 

- -  tz~(e,  E ) .  Dwn(O)  - #2(e, E w,(0). 
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Set 
2e 2= 

:=(a, x)  = f f e -  " -  ~ r ~ -  l zE(rx)  dr d o ; then 

28 

I~(g) = ~-1 f f ,~z (tr, x) D2wn(trx) (x, x) dtr dSx 
sn--I 0 

- / z t (e ,  E)" Dwn(O) -- #2(e, E) wn(0). 

Changing coordinates again gives 

I,(E)--E-I f ~E([X] ' ~xl)IX[ - n q - I  D2wI(x)(~x[ '.-~) dx 
B(0 ;20 

-- kq(e, e)" Dw,7(O) -/.t2(e, E) w~(0). 

Using the definition of w~ and Lemma 3.3, we obtain 

lim I~=(E)= e -1 t f ,/= (Ixl,  I-~1)[xl-"+' M(x)(T~x I , .(.-~) dx 
~/~a 0 [B(0 ;2e) 

B(0;20 \ 

where dF(x) , 
XiXj 

= deo (x  ) . i,j=l ~-~ 
On the other hand, 

lim In~(E) ---- e -~-~ f ZE(X) W(X) dx, 
~7"~ 0 B(0 ;2=) 

and so we conclude 

B(0;2e) ~B(0;2e) 

. 

B(0;20 

Finally, we obtain the inequality 

+ f txl-"+adlrl(x)} �9 
B(0;20 

(3.18) 

/0, sup w/ and let y, be a point in ~B(0, e ) such  that Now let m= max 
B(0 ;0 J 

w(y=) = m=. For some constant Kt >_-- 0 we see that r~(z) = w(z) + K1 [xl 2 
is convex. Let p= E R" be a vector such that 

~,(z) > ~,(yD + p=(z - yD for all z E D. 
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For  w we have 

w(ye + z) ~ me + (Pe - 2Klye) " z - K1 Izl 2. 

{ { ( m . ~ ) }  } 
Let H e =  y e + z l [ z l 2 ~ m i n  e 2, and ( p e - 2 K ~ y e ) ' z > O .  

that w(x) > me = 2 in He and that 

n+2 
f Z~,(X) W(X) dx ~= cm~ '2 . 

B(O;20 

Combining this inequality with (3.18) we conclude 

n+2 

'[me~ 2 = B(o;20S Ix I - '+ ' lM(x) ldx+B(o fo lx[ -n+ 'd]Pl (x ) } ;  

and consequently by (3.17) 

This proves that 

m 2 = o(e2). 

w(z) <= o(Iz[2). 

W e  see 

(3.19) 

f 
We now consider / e =  mini0,  inf w~" let Ee be the set / B(0;~) ~ 

Using inequality (3.18) we obtain 

lie[ 
2-- meas (Ee) = o( :+2) .  

We now prove by contradiction that le = o(e2). Indeed, if le =1 = o(e2), then there 
is a sequence et ~ 0 such that dor Co > 0, le i <= - coe~ for all i E Z +. Now 

this implies 

meas (Eei) = o(e}~). 

Let Yi be a point such that w(yD = le i and Yi E B(0; el). Since meas (Eei) ----- o(eT) 

it follows that there is a sequence of  points zi E B(0, ei) such that 

l,g 
w(z,) ~ + -7; 

l y ,  - ~ l  = o(~,) .  

From this it follows that there are points ~ 6 B(0; e~) such that 

ei 
]Dw(.~,) I - o (1)  as  i ~  ~ .  
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For some K ~ > 0  

Since r~ is convex 

and so 

Therefore, 

we see that ~(z) = w(z) + K1 [zl 2 is convex and 

1D~(~,)I = o(1---5 + 2Kw, 

ei 
_ . 

o(1) 

if(z) --_ r~(yt) -k D~(~)  (z - f~) for all z E/2 ,  

~(z) ~ 0 q- Dw(yi) (z -- ~ )  for all z E/2 .  

w(z) :> - K~ I z 12 + D~(~,) (z - ~,) for all z E/2 .  

Taking ~:i ---- Y~ + e~ I D~(~,)I we find that ziE B(0; 2e~) and 

w03 -> - K :~  + I n~()31 e, 

o(I) 

= o(1)" 

This contradicts (3.19) and so proves 

w(z )  >= - o(1~ ?). 
This and (3.19) show that (3.16) holds for all points at which Dw(x) exists and 

(3.17) holds. The set of such points includes almost all points o f / 2  and so the 
lemma is proved. 

QED 

The next lemma lets us estimate the ratio of trace (M(x)) and IDw(x) l on 
appropriate subsets o f /2 .  

Lemma 3.20. Let w E C(/2) A wl'~176 and assume (3.4) holds. I f  w has an interior 
maximum then there is a constant ~o ~ 0 such that for D2w = M -1- F (as given 
in Lemma 3.2) 

[.(trace (M(x)))-]" f 
--  ~ IDw(x)l d d x = o ~  for 0 < ~ < ~ o .  (3.21) 

Wd 

Proof .  Let wn be the approximation used in the proof of Lemma 3.10 and let (g] 
be the analogs for fge. Let 

n--I 
I'd-= f IAw.(x)l [detD~w,~(x)[--~-dx; 
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we see that just as in the proof  of Lemma 3.10 there is a 

[detO=w~(x)ldx= f dx for 0 <  8 <  8o. 
B(0 ;6) \B(0 ;612) 

/~= f 
~ 6/2 

Obviously 

~0 > 0 such that 

as r/"~ 0 for all 6 E (0, 80). 
see that 

meas (fr \ ~#a) -+ 0 

Clearly 

meas (f#~ \ (#~) ~ 0 

By the definition of  fr and w~ it is not difficult to 

a s ~ ' N 0  for a 1 1 0 < 8 ' < 6 < 6 0 .  

as ~ "~ 0 if meas (ado \ e k, J<6 f~6.) = 0. 

forSin~et~e'~m"''"s ~ mono.one ~eorea~i.~ami,y o,ets m~as ( .~,  ~ a l m o s t  a , ,  ~ ,0 'o' T~u~ ~ ~ ) - - ~  

meas (fr \ f#~) ~ 0 as ~ "N 0 for almost all 8 E (0, 80). 

Let Vj = {8 E (0, 80) I meas (c~2_:6 \ f~:-:6) ;/+ 0 as ~ ~ 0}. Each set Vj is of 

measure zero so V = k J Vj is also of measure zero. For  each 8 E (0, 80) \  V 
we see j= o 

meas (ff2_j+ln \ fr -+ 0 as r/"~ 0 for all j 6  Z +. 

This proves our claim. 

I~ j=>co8 n for 0 < 8 < 8 o ;  

and by H61der's Inequality applied to the definition of Ig we have 

( )( y Ig ~ f IAw~(x)l. dx -~ f idet O=w,(x)l ax - 7  

( =< ,, f [(trace (DZw~(x)))-]n dx -Yct ; 
~6 \~g/2 

since A w~(x) = trace (DZwn(x)) ~ 0 for all x E f#~. 

These inequalities allow us to conclude for some c2 > 0 

f [(trace (DZw,(x)))-]" dx >= c2 8". (3.22) 
cSr~ ~c~rj 
6' 612 

Now we claim that, for almost all 8 E (0, 80) 
r/ r/ meas ((c~2_j+i 6 \ fgz_j+16) k) (fq2_j+lo \ fq2_j+16)) ~ 0 as ~ ~ 0 (3.23) 

for any positive integer, j .  

Indeed, we have already seen in the proof  of  Lemma 3.10 that meas (fq~ \ if6)-+ 0 
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The differentiation theorem expressed by, (3.17) shows that O2w,7(x)~ M(x) 
for almost all x E ~ .  Since 

0 ~ trace (O2wn(x)) ~ -Ko for all x E (#~ 

and since (3.22) and (3.23) hold we see that 

f [(trace (M(x)))-]" dx ~ ca(2 -j+l 6)" 

for all j E Z + for almost all 8 E (0, 80). 
Thus 

f [,(trace (M(_x)))-]" 
L 2 - j+16  j dx~c2 

~'2- -J+ I ~ \2 --J~ 

for all j E  Z+; for almost all 8 E (0, 80). 

On the set f~2_~+1~2_j~ we see that [Dw(x)[ <= 2 - j+l  8 almost everywhere and 

SO 

[!traee (M(x)))-.]"dx > C 2 f 
d I_ lOw(x)[ J - 

f~ 2-J+ lo\~ 2 - j  ~ 

for all jE  Z+; for almost all 8E (0, 80). 

By adding these inequalities over j E Z + we obtain 

[!trace (M(x)))-]" f [  dx = ~ for almost all 8 E (0, 8o). 
I Dw(x)] 1 

This of  course gives the result claimed by the lemma. 

We are now ready to prove Theorem 3.1. 

QED 

Proof of Theorem 3.1. This will be a proof  by contradiction. Assume the theorem 
is false; then 

m o = s u p ( v -  u) + -  s u p ( v -  u) + > 0 .  
t2 012 

Let ,3 = v + - e and ~ ---- uF + e; note that if e is sufficiently small then 

sup (v - ~)+ - sup (v -- ~) ~ mo.  
a, 0 o, 2 

By Theorems 2.21 and 2.27 we see that ff is a viscosity supersolution of (2.8) and t3 
is a viscosity subsolution of (2.8). By Theorem 1.11 for any direction 2 

K K 
D]u ~ - -  and D]v ~ - - -  in f2, (in the sense of  distributions). (3.24) 

8 8 
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Letting r~ ---- fi - f ,  we see that w is in C(D)/5 W1,~176 and it satisfies (3.4). 
With f~n defined by (3.9) with w = ~ we see by Lemma 3.10 that for some 
~o : > 0  

meas (rg~) ~ Co ~" for all ~ < ~o. 
By Lemma 3.3 

D2~ = )1r + / ~ + ;  

D2u = )~ -  -1- ]~-. 

: /~'+-  /~- give a representation for D2~. Then /~r = ,~r+ _ h~'- and 

By Lemma 3.15, for almost all x E f~, Dfi(x) and D~(x) exist and 

~(x + z) - ~(x) - D~(x) (z) - �89 (z, z) _< o(]zl~); 

u(x + z) -- u(z)x -- OU(X) (z) -- �89 (z, z) ~ -o(Izl2). 

Furthermore, by the definition of rio 

/~r-(x) ~> ~r+(x) for almost all x E (~.  

Applying the definitions of viscosity subsolution and supersolution we find 
that 

F(ff1+(x), D~(x], v(x)) ~ F(~r-(x), Of(x), ~(x)) for almost all x E fro. (3.25) 

By Lemma 3.3 and (3.24) we see 

.ffK I )~ ~r-(x) > 3r > - __K I for almost all x E ff~. (3.26) 
E 8 

If  (o 0 holds then for almost all x E f#n 

F(If/I+(x), D~)(x), 1)(x)) <= F(.~I-(x), Dr(x), f(x)) - ko(v(x) - ~t(x)), 

and by the continuity of F and (3.26) there is a continuous increasing function 
a(t) such that a(0) = 0 and 

F(h~+(x), D~(x), ~(x)) ~ F(M-(x),  Dr(x), f(x)) - ko(~(x) - ~t(x)) + a(O) 

for almost all x E ~6. 

Choosing d} sufficiently small yields 
ko 

F(M+(x), D~(x), b(x)) ~ F(lll-(x), D~t(x), if(x)) - --~ mo -]- a(O) 

for almost all x E f~t. 

This clearly contradicts (3.25) if 6 is sufficiently small. 
I f  (fl) holds, then for almost all x E ~ 

F(l~+(x), Dr(x), ~)(x)) ~ F(~I-(x), Du(x), u(x)) 

-- (Co trace (0~r- - )tl+)(x)) - c, ]Off(x) - Dr(x)]). 
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Note  that  A~r(x)-----A~r+(x)- Af-(x) and Dff,(x)= 1)~(x)- D?t(x) for almost  

all x E D,. By Lemma 3.20 there is a set E with positive measure in f~0 such that  

(trace (A~7(x)))- ~ 2 ~ ]D~,(x) [ for almost all x E/~. 
C0 

Consequently 

F(M+(x), D~(x), ~(x)) < F(M-(x), D'~(x), ~(x)) for almost all x E / ~ C  f(0. 

This also contradicts (3.25) and so completes the p roof  of  Theorem 3.1. 

QED 

The research reported here was supported in part by grants from the Alfred P. Sloan 
Foundation and the National Science Foundation. 
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